The present study was designed to identify and quantify the major phenolic compounds (phenolics) in the inner and outer husks, buds and bark of the Persian walnut, Juglans regia L. A comparison across six different cultivars grown in Slovenia was also carried out: ‘Fernor’, ‘Fernette’, ‘Franquette’, ‘Sava’, ‘Krka’ and ‘Rubina’. A total of 83 compounds were identified, which included 25 naphthoquinones, 15 hydroxycinnamic acids, 8 hydroxybenzoic acids, 13 flavanols, 2 flavones, 1 flavanone and 19 flavonols. For the first time, 38 phenolics in the husks, 57 phenolics in the buds and 29 phenolics in the bark were presented in J. regia within this study. Naphthoquinones were the major phenolics determined, approximately 75% of all analysed phenolics in the inner husk, 85% in the outer husk, 50% in buds and 80% in bark. The highest content of phenolics was found in the walnut buds, followed by the bark, the inner husk and the outer husk. On the basis of these high phenolic contents, walnut husks, buds and bark represented valuable by-products of the walnut tree. These data also show origin-related phenolic contents across the cultivars, and thus these phenolic profiles might serve to define the origins of different walnut cultivars.
We investigated whether juglone is the only allelochemical in a leaf extract from the walnut (Juglans regia L.). This was achieved through comparisons of the effects of pure juglone (1 mM, 100 μM, 10 μM control juglone) and J. regia leaf extract (prepared as 1 mM, 100 μM leaf juglone) on seed germination, seedling growth, and secondary metabolism of the selected crop vegetables. Two control treatments were also applied, as extraction medium and water. For inhibition of seed germination, S. lycopersicum, B. rapa var. japonica, and V. locusta were more sensitive to 1 mM leaf juglone, and L. sativa was more sensitive to 1 mM control juglone. This suggests that this walnut leaf extract contains specific phenolic substance(s) that can stimulate seed germination in some species and inhibit it in others. Seedling length was more sensitive to 1 mM leaf juglone than 1 mM control juglone, with selective strong inhibition of root length versus shoot length by 1 mM control juglone. Juglone also had significant effects on the secondary metabolism of L. sativa, in particular for seedlings treated with 100 μM control juglone, with marked decreases in all secondary metabolites studied. Flavonols constituted the majority of these metabolites in L. culinaris, which showed the least sensitivity to both control juglone and leaf juglone treatments. Thirty compounds were identified and quantified in S. lycopersicum, L. culinaris, and L. sativa, some for the first time in these plants, and all for the first time in the seedlings of these crop vegetables.
This study compares the individual phenolic response of husk tissues of Juglans regia L., infected to different degrees of severity with walnut anthracnose, which is one of the most serious and widespread walnut diseases worldwide. A comparison among three differently susceptible cultivars, ‘Franquette’, ‘Milotai 10’ (‘M10’), and ‘Milotai intenziv’ (‘M10-37’), is made. In our methodology, high performance liquid chromatography coupled with mass spectrometry is used to identify and quantify the compounds. Our results show that flavanols, flavonols, and naphthoquinones account for more than 95% of the phenolic compounds identified in the walnut husk. The higher total analyzed phenolic content in tissues is more affected by walnut anthracnose confirmed that phenolics play a major role in the plant’s response against pathogens. A difference between cultivars is observed, since French cultivar ‘Franquette’ responds differently to walnut anthracnose infection than Hungarian cultivars ‘M10’ and ‘M10-37’. Naphthoquinones and flavanols have a very similar response to walnut anthracnose infection. The resistance of cultivars may be due to the reaction time of the plant and the speed with which it recognizes the pathogen and responds quickly to the infection by containing it while it has not yet spread. Flavonols may be the most important phenolic compounds in disease control, since they respond more rapidly to infection than flavanols and naphthoquinones. They also play an inhibitory role in the early stages of viral and bacterial infections.
The present study was designed to identify and quantify the major phenolic compounds in different Juglans regia L. (common walnut) tissues (leaves, petioles, bark, roots, buds), to define the compositions and contents of phenolic compounds between these tissues. A total of 91 individual phenolic compounds were identified and quantified, which comprised 8 hydroxycinnamic acids, 28 hydroxybenzoic acids, 11 flavanols, 20 flavonols, 22 napthoquinones, and 2 coumarins. Naphthoquinones were the major phenolic group in leaves, petioles, bark, and buds, as >60% of those identified, while hydroxybenzoic acids were the major phenolic group in side roots, as ~50% of those identified. The highest content of phenolic compounds was in the J. regia main root, followed by side roots and buds, leaves, and 1-year-old bark; the lowest content was in petioles and 2-year-old bark. Leaves, roots, and buds of J. regia represent a valuable source of these agro-residues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.