This paper presents an experimental and numerical heat transfer analysis of heat-pipe-based CPU coolers and a performance optimization methodology. The first part of the study focuses on the performance of two commercial HP-based CPU coolers under inclination angles of 0°, 90° and 180°. The results show that the 90° orientation provides the best thermal performance. The influence of heat pipe orientation on the performance of the entire system is obscured due to the much higher thermal resistance on the air-side of the cooler. A fourfold increase in air volumetric flow rate has only a minor effect on the cooling performance enhancement with a reduction of the thermal resistance from 0.11 K W-1 to 0.074 K W-1 at the highest heating power. In the second part of the study, heat transfer numerical simulations of the finned part of a cooler were performed and validated using experimental results. The output of the simulation is a 2-D temperature field, which is used as an input for the optimization methodology based on fin effectiveness and fin efficiency. Optimizing the fin geometry by removing unnecessary material yielded a 23% increase of the fin efficiency and decreased the weight of a fin by approx. 30%, proving the usefulness of the proposed methodology, which helps reduce costs, weight and development time of finned HP-based coolers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.