Great challenges still remain to develop drug carriers able to penetrate biological barriers (such as the dense mucus in cystic fibrosis) and for the treatment of bacteria residing in biofilms, embedded in mucus. Drug carrier systems such as nanoparticles (NPs) require proper surface chemistry and small size to ensure their permeability through the hydrogel-like systems. We have employed a microfluidic system to fabricate poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with a muco-penetrating stabilizer (Pluronic), with a tunable hydrodynamic diameter ranging from 40 nm to 160 nm. The size dependence was evaluated by varying different parameters during preparation, namely polymer concentration, stabilizer concentration, solvent nature, the width of the focus mixing channel, flow rate ratio and total flow rate. Furthermore, the influence of the length of the focus mixing channel on the size was evaluated in order to better understand the nucleation–growth mechanism. Surprisingly, the channel length was revealed to have no effect on particle size for the chosen settings. In addition, curcumin was loaded (EE% of ≈68%) very efficiently into the nanoparticles. Finally, the permeability of muco-penetrating PLGA NPs through pulmonary human mucus was assessed; small NPs with a diameter of less than 100 nm showed fast permeation, underlining the potential of microfluidics for such pharmaceutical applications.
Clobetasol propionate (CLO) is a potent glucocorticoid used to treat inflammation-based skin, scalp, and hair disorders. In such conditions, hair follicles (HF) are not only the target site but can also act as drug reservoirs when certain formulations are topically applied. Recently, we have demonstrated nanostructured lipid carriers (NLC) containing CLO presenting epidermal-targeting potential. Here, the focus was evaluating the HF uptake provided by such nanoparticles in comparison to a commercial cream and investigating the influence of different physical stimuli [i.e., infrared (IR) irradiation (with and without metallic nanoparticles-MNP), ultrasound (US) (with and without vibration) and mechanical massage] on their follicular targeting potential. Nanosystems presented sizes around 180 nm (PdI < 0.2) and negative zeta potential. The formulation did not alter skin water loss measurements and was stable for at least 30 days at 5 °C. Nanoparticles released the drug in a sustained fashion for more than 3 days and increased passively about 40 times CLO follicular uptake compared to the commercial cream. Confocal images confirmed the enhanced follicular delivery. On the one hand, NLC application followed by IR for heat generation showed no benefit in terms of HF targeting even at higher temperatures generated by metallic nanoparticle heating. On the other hand, upon US treatment, CLO retention was significantly increased in deeper skin layers. The addition of mechanical vibration to the US treatment led to higher follicular accumulation compared to passive exposure to NLC without stimuli. However, from all evaluated stimuli, manual massage presented the highest follicular targeting potential, driving more than double the amount of CLO into the HF than NLC passive application. In conclusion, NLC showed great potential for delivering CLO to HF, and a simple massage was capable of doubling follicular retention.Skin, hair, and scalp-related dermatological inflammatory pathologies have been treated for decades with oral and topical glucocorticoids. Among the topical drugs under study, clobetasol propionate (CLO) stands out as the most potent one 1 . Due to its vasoconstricting, anti-inflammatory, immunosuppressive and antiproliferative effects, the drug is useful in the treatment of conditions such as eczema, atopic dermatitis, alopecia areata, frontal fibrosing alopecia, psoriasis and lichen planopilaris 2-4 . Nevertheless, continuous use of typical CLO dermatological formulations may present local side effects as skin atrophy, pruritus, folliculitis, and telangiectasia 5-7 . Even though topical treatment results in fewer adverse effects when compared to oral or parenteral administration, formulations capable of controlling drug release while targeting and enhancing drug penetration to specific skin layers can provide additional therapeutic benefits.Previous studies from our group have shown CLO-loaded nanostructured lipid carriers (NLC), produced with 1/5 th of the drug dose used in commercial formulations, presented...
For nanotechnology enabled delivery of hydrophilic protein‐based drugs, several polymer‐based carrier systems have been used in the past to protect the sensitive load and to facilitate cellular uptake and crossing of biological barriers. This study uses gelatin, a natural and biodegradable macromolecule, as carrier material which is approved for several applications. Nanoprecipitation is used to form nanoparticles and to maintain the physicochemical integrity of gelatin, hydrophilic crosslinkers, e.g., paraformaldehyde, glutaraldehyde, carbodiimide, and transglutaminase are employed. However, these crosslinkers diffuse homogenously into the carrier matrix also crosslinking the polymeric matrix with the entrapped protein‐based molecules thus rendering it inactive. Hence a hydrophobic zero‐length crosslinker, diisopropylcarbodiimide, is applied to avoid diffusion into the particles. This will provide an opportunity to encapsulate protein‐based drugs in the non‐crosslinked matrix. The hypothesis of surface crosslinking is proven by the extent of crosslinking and more importantly by encapsulation and the release of lysozyme as a model hydrophilic protein. Furthermore, essential process parameters are evaluated such as crosslinker concentration, crosslinking time and crosslinking reaction temperature with regard to the effect on particle size, size distribution and zeta‐potential of gelatin nanoparticles. The optimum formulation results in the production of gelatin nanoparticles with 200‐300 nm and a polydispersity index < 0.2.
Poly(lactide- co -glycolide acid) (PLGA) is an extraordinary well-described polymer and has excellent pharmaceutical properties like high biocompatibility and good biodegradability. Hence, it is one of the most used materials for drug delivery and biomedical systems, also being present in several US Food and Drug Administration-approved carrier systems and therapeutic devices. For both applications, the quantification of the polymer is inalienable. During the development of a production process, parameters like yield or loading efficacy are essential to be determined. Although PLGA is a well-defined biomaterial, it still lacks a sensitive and convenient quantification approach for PLGA-based systems. Thus, we present a novel method for the fast and precise quantification of PLGA by RP-HPLC. The polymer is hydrolyzed into its monomers, glycolic acid and lactic acid. Afterwards, the monomers are derivatized with the absorption-enhancing molecule 2,4′-dibromoacetophenone. Furthermore, the wavelength of the derivatized monomers is shifted to higher wavelengths, where the used solvents show a lower absorption, increasing the sensitivity and detectability. The developed method has a detection limit of 0.1 µg/mL, enabling the quantification of low amounts of PLGA. By quantifying both monomers separately, information about the PLGA monomer ratio can be also directly obtained, being relevant for degradation behavior. Compared to existing approaches, like gravimetric or nuclear magnetic resonance measurements, which are tedious or expensive, the developed method is fast, ideal for routine screening, and it is selective since no stabilizer or excipient is interfering. Due to the high sensitivity and rapidity of the method, it is suitable for both laboratory and industrial uses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.