Hesperidin, a bioflavonoid, is an abundant and inexpensive by-product of Citrus cultivation. A deficiency of this substance in the diet has been linked with abnormal capillary leakiness as well as pain in the extremities causing aches, weakness and night leg cramps. No signs of toxicity have been observed with the normal intake of hesperidin or related compounds. Both hesperidin and its aglycone hesperetin have been reported to possess a wide range of pharmacological properties. This paper reviews various aspects of hesperidin and its related compounds, including their occurrence, physical and chemical properties, analysis, pharmacokinetics, safety and toxicity and the marketed products available. A special emphasis has been laid on the pharmacological properties and medicinal uses of these compounds.
AVO4 orthovanadates are materials of fundamental and technological importance due to the large variety of functional properties exhibited by them. These materials have potential applications such as scintillators, thermophosphors, photocatalysts, and cathodoluminescence materials among others. They are also used as laser-host crystals.Studies at high pressures and temperatures are helpful for understanding the physical properties of the solid state, in particular, the phase behaviour of AVO4 materials. For instance, they have contributed to the understanding of the macroscopic properties of orthovanadates in terms of microscopic mechanisms. A great progress has been made in the last decade towards the study of the pressure-effects on the structural, vibrational, and electronic properties of AVO4 compounds. Thanks to the combination of experimental and theoretical studies, novel metastable structures with interesting * Corresponding author, Email: daniel.errandonea@uv.es, Fax: (34) 96 3543146, Tel.: (34) 96 354 4475 physical properties have been discovered and the high-pressure structural sequence followed by AVO4 oxides has been understood. In this article, we will review highpressure studies carried out on the phase behaviour of different AVO4 compounds. The studied materials include rare-earth orthovanadates and other compounds; for example, BiVO4, FeVO4, CrVO4, and InVO4. In particular, we will focus on discussing the results obtained by different research groups, who have extensively studied orthovanadates up to pressures exceeding 50 GPa. We will make a systematic presentation and discussion of the different results reported in the literature. In addition, with the aim of contributing to the improvement of the actual understanding of the high-pressure properties of ternary oxides, the high-pressure behaviour of orhovanadates will be compared with related compounds; including phosphates, chromates, and arsenates. The behaviour of nanomaterials under compression will also be briefly described and compared with their bulk counterpart. Finally, the implications of the reported studies on technological developments and geophysics will be commented and possible directions for the future studies will be proposed.
We report a high-pressure experimental and theoretical investigation of the structural properties of zircon-type HoVO 4 . Angle-dispersive x-ray diffraction measurements were carried out under quasi-hydrostatic and partial non-hydrostatic conditions up to 28 and 23.7 GPa, respectively. In the first case, an irreversible phase transition is found at 8.2 GPa. In the second case, the onset of the transition is detected at 4.5 GPa, a second (reversible) transition is found at 20.4 GPa, and a partial decomposition of HoVO 4 was observed. The structures of the different phases have been assigned and their equations of state (EOS) determined. Experimental results have also been compared to theoretical calculations which fully agree with quasi-hydrostatic experiments. Theory also suggests the possibility of another phase transition at 32 GPa;i.e. beyond the pressure limit covered by present experiments. Furthermore, calculations show that deviatoric stresses could trigger the transition found at 20.4 GPa under nonhydrostatic conditions. The reliability of the present experimental and theoretical results is supported by the consistency between the values yielded for transition pressures and EOS parameters by the two methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.