Agriculture is the best foundation for human livelihoods, and, in this respect, crop production has been forced to adopt sustainable farming practices. However, soil salinity severely affects crop growth, the degradation of soil quality, and fertility in many countries of the world. This results in the loss of profitability, the growth of agricultural yields, and the step-by-step decline of the soil nutrient content. Thus, researchers have focused on searching for halotolerant and plant growth-promoting bacteria (PGPB) to increase soil fertility and productivity. The beneficial bacteria are frequently connected with the plant rhizosphere and can alleviate plant growth under salinity stress through direct or indirect mechanisms. In this context, PGPB have attained a unique position. The responses include an increased rate of photosynthesis, high production of antioxidants, osmolyte accumulation, decreased Na+ ions, maintenance of the water balance, a high germination rate, and well-developed root and shoot elongation under salt-stress conditions. Therefore, the use of PGPB as bioformulations under salinity stress has been an emerging research avenue for the last few years, and applications of biopesticides and biofertilizers are being considered as alternative tools for sustainable agriculture, as they are ecofriendly and minimize all kinds of stresses. Halotolerant PGPB possess greater potential for use in salinity-affected soil as sustainable bioinoculants and for the bioremediation of salt-affected soil.
Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plant growth promoting rhizobacteria (PGPR) have an immediate impact on improving profitability based on higher crop yield. Some PGPR produce 1-aminocyclopropane-1-carboxylic (ACC) deaminase (EC 4.1.99.4), which controls ethylene production by diverting ACC into α-ketobutyrate and ammonia. ACC deaminase enhances germination rate and growth parameters of root and shoot in different harvests with and without salt stress. Arbuscular mycorrhizal fungi (AMF) show a symbiotic relationship with plants, which helps in efficient uptake of mineral nutrients and water by the plants and also provide protection to the plants against pathogens and various abiotic stresses. The dual inoculation of PGPR and AMF enhances nutrient uptake and productivity of several crops compared to a single inoculation in both normal and stressed environments. Positively interacting PGPR + AMF combination is an efficient and cost-effective recipe for improving plant tolerance against salinity stress, which can be an extremely useful approach for sustainable agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.