Background: Air pollution is killing close to 5 million people a year, and harming billions more. Air pollution levels remain extremely high in many parts of the world, and air pollution-associated premature deaths have been reported for urbanized areas, particularly linked to the presence of airborne nano-sized and ultrafine particles. Main text: To date, most of the research studies did focus on the adverse effects of air pollution on the human cardiovascular and respiratory systems. Although the skin is in direct contact with air pollutants, their damaging effects on the skin are still under investigation. Epidemiological data suggested a correlation between exposure to air pollutants and aggravation of symptoms of chronic immunological skin diseases. In this study, a systematic literature review was conducted to understand the current knowledge on the effects of airborne particulate matter on human skin. It aims at providing a deeper understanding of the interactions between air pollutants and skin to further assess their potential risks for human health. Conclusion: Particulate matter was shown to induce a skin barrier dysfunction and provoke the formation of reactive oxygen species through direct and indirect mechanisms, leading to oxidative stress and induced activation of the inflammatory cascade in human skin. Moreover, a positive correlation was reported between extrinsic aging and atopic eczema relative risk with increasing particulate matter exposure.
Following our call to join in the discussion over the suitability of implementing a reporting checklist for bio-nano papers, the community responds. Below we report short extracts highlighting the main messages of the correspondences we received. The interested readers can find the complete pieces in the accompanying Supplementary Information.
a Nanocrystals of drug substances have important therapeutic applications, but their preparation is often difficult due to size control in bottom up approaches, or energetic milling and surface activation in top down processing. In this study, confinement within liposome nanocompartments is demonstrated to enable drug crystallization with a high aspect ratio but limited growth resulting in nanocrystals, using a simple freeze-thaw process which is anticipated to be amenable to large scale preparation. After the freeze-thaw, cryo-transmission electron microscopy (cryoTEM) imaging and cryo-electron tomography revealed that the majority of the liposomes contained a single drug nanocrystal, observed to physically stretch but not burst the liposomes, and the composition of the freeze-thaw medium altered the aspect ratio of the drug nanocrystals. Small angle X-ray scattering and dynamic depolarized light scattering were used to confirm the asymmetric nature of particles in suspension to exclude the cryoTEM preparation process as a contributor to the particle morphology. In assessing potential use in controlled release drug delivery, the in vitro release rate of ciprofloxacin from liposomes containing the nanocrystals revealed that the rate of dissolution of the nanocrystals became the rate controlling step, in contrast to the lipid bilayer rate controlling function prior to the formation of the crystals. The ability to modulate the release rate of the active ingredient in a complex formulation using simple physical means (e.g., freeze/thaw) is an attractive possibility, especially in highly regulated industries such as pharmaceuticals where qualitative and quantitative changes of composition would require extensive safety evaluations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.