Due to the harm forest fires cause to the environment and the economy as they occur more frequently around the world, early fire prediction and detection are necessary. To anticipate and discover forest fires, several technologies and techniques were put forth. To forecast the likelihood of forest fires and evaluate the risk of forest fire-induced damage, artificial intelligence techniques are a crucial enabling technology. In current times, there has been a lot of interest in machine learning techniques. The machine learning methods that are used to identify and forecast forest fires are reviewed in this article. Selecting the best forecasting model is a constant gamble because each ML algorithm has advantages and disadvantages. Our main goal is to discover the research gaps and recent studies that use machine learning techniques to study forest fires. By choosing the best ML techniques based on particular forest characteristics, the current research results boost prediction power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.