The performance measurement of a great variety of enterprises is a highly complicated issue, especially taking into account that performance has a great many aspects and many variables which may, at times, be highly inconsistent with each other. The use of analytics and advanced machine learning promotes the decision-making process for each and every organizational structure. This paper combines the Balanced Scorecard and predictive analytics in order to assess the performance of a co-financed European Union program, which addressed 4071 Greek Small and Medium-sized Enterprises (SMEs) that requested funding. The application of predictive analytics tools and metrics in the available dataset of all addressed SMEs reveal the M5 Model Tree regressor to be an overall best prediction model for estimating the effect of the evaluation of companies’ funding proposals on their financial results after the finalization of the co-financed program.
Artificial Intelligence (AI) has revolutionized the way organizations face decision-making issues. One of these crucial elements is the implementation of organizational changes. There has been a wide-spread adoption of AI techniques in the private sector, whereas in the public sector their use has been recently extended. One of the greatest challenges that European governments have to face is the implementation of a wide variety of European Union (EU) funding programs which have evolved in the context of the EU long-term budget. In the current study, the Balanced Scorecard (BSC) and Artificial Neural Networks (ANNs) are intertwined with forecasting the outcomes of a co-financed EU program by means of its impact on the non-financial measures of the government body that materialized it. The predictive accuracy of the present model advanced in this research study takes into account all the complexities of the business environment, within which the provided dataset is produced. The outcomes of the study showed that the measures taken to enhance customer satisfaction allows for further improvement. The utilization of the proposed model could facilitate the decision-making process and initiate changes to the administrational issues of the available funding programs.
Machine Learning (ML) can be proved as an important tool in planning better business strategies. For the purposes of the present study, the prospect for the development of an electronic platform by a technology firm providing financial services is explored. The purpose of this article is to demonstrate the ways in which a start-up can predict the success of an online platform prior to its market launch. The prediction is achieved by applying Artificial Intelligence (AI) on Key Performance Indicators (KPIs) derived from the customers’ perspective, as shown in the Balanced Scorecard (BSC). The research methodology was quantitative and online questionnaires were used to collect empirical quantitative data related to bank loans. Subsequently, KPIs were created based on the collected data, to measure and assess the success of the platform. The effectiveness of the model was calculated up to 91.89%, and thus, it is estimated that the online platform will be of great success with 91.89% validity. In conclusion, prediction was found to be crucial for businesses to prevent a dire economic situation. Finally, the necessity for businesses to keep up with technological advances is highlighted.
Electric grid power consumption load is one of the fundamental areas that need to be faced to provide a sustainable and green ecosystem in smart cities. Consumption load as well as supply and availability of electricity to suppliers and customers is a major issue to be faced to have a balanced smart city power grid infrastructure. Balancing in this case is assumed as a well-designed supply chain management system to be applied in the Smart City (SC) of Athens, Greece. Core of such a system is the knowledge of electric power consumption load per weekly basis of a year, that is the granularity of the proposed system is one week of the system’s operation. In this paper, focus is given on the electric load forecast component of an Energy Management System (EMS) such as the Independent Power Transmission Operator (ITPO) of Greece. Concretely, stochastic data of electric energy consumption load are used to predict the demand or offering of electric power in the future. This is achieved by incorporating a machine learning second-order exponential smoothing algorithm. Such an algorithm is able to speculate near or far in the future power consumption load thus providing a promising parameter to predict smart city needs for electric power in the future. Adopted system is evaluated by the evaluation metric of Normalized Root Mean Square Error (NRMSE), which assures that the system can be used for future predictions of electric power consumption load in smart cities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.