The development of computer technology has determined the vector for the expansion of services based on the Internet and "G" technologies. The main requirements for modern services in the banking sector are security and reliability. At the same time, security is considered not only as ensuring the confidentiality and integrity of transactions, but also their authenticity. However, in the post-quantum period, US NIST specialists question the durability of modern means of providing basic security services based on symmetric and asymmetric cryptography algorithms. The increase in computing resources allows attackers to use modern threats in combination. Thus, there is a need to search for new and/or modify known algorithms for generating MAC (message authentication codes). In addition, the growth of services increases the amount of information that needs to be authenticated. Among the well-known hash algorithms, the hash functions of universal hashing are distinguished, which allow initially determining the number of collisions and their uniform distribution over the entire set of hash codes. Possibilities of modifying the cascade hashing algorithm UMAC (message authentication code based on universal hashing, universal MAC) based on the use of McEliece crypto-code construction on algebrogeometric (elliptic codes (EC), modified elliptic codes (MEC) and damaged codes (DC). This approach allows preserving the uniqueness property, in contrast to the classical UMAC scheme based on a block symmetric cipher (AES). The presented algorithms for evaluating the properties of universality and strict universality of hash codes make it possible to evaluate the security of the proposed hashing constructs based on universal hash functions, taking into account the preservation of the universality property
The article analyzes construction of crypto-code designs (CCDs) on the basis of asymmetric Mac-Alice and Niederreiter crypto-code systems on elliptical (EC) and modified elliptic codes (MEC), which, in the conditions of post-quantum cryptography, allow to provide a guaranteed level of crypto stability, to counteract the modern Attacks and attack by V. Sidelnikov on the theoretical code schemes of McEliece and Niederreiter. Schemes of hybrid crypto-code designs constraction the lossy codes are addressed. Methods of constructing mechanisms of confidentiality and integrity of banking information resources under hybrid threats to security components (information security, cybersecurity, information security) are proposed. Using of a lossy code is suggested to this end. Lossy Code allow you to increase the speed of code changes by reducing the power of the field when causing damage to open text and reducing the amount of data transferred by causing harm to the cipher text. The methods of constructing unprofitable codes and approaches for use in hybrid KKK of McEliece and Niederreiter on modified elliptic codes are considered. Practical algorithms for the use of the MV2 mechanism in McEliece's CCD and Niederreiter's modified elliptic codes are proposed, which allows the implementation of the CCD hybrid scheme. The comparative results of the study of stability and power capacity with respect to their practical use in automated banking systems are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.