During development of the cerebral cortex, the invasion of thalamic axons and subsequent differentiation of cortical neurons are tightly coordinated. Here we provide evidence that glutamate neurotransmission triggers a critical signaling mechanism involving the activation of phospholipase C-beta1 (PLC-beta1) by metabotropic glutamate receptors (mGluRs). Homozygous null mutation of either PLC-beta1 or mGluR5 dramatically disrupts the cytoarchitectural differentiation of 'barrels' in the mouse somatosensory cortex, despite segregation in the pattern of thalamic innervation. Furthermore, group 1 mGluR-stimulated phosphoinositide hydrolysis is dramatically reduced in PLC-beta1-/- mice during barrel development. Our data indicate that PLC-beta1 activation via mGluR5 is critical for the coordinated development of the neocortex, and that presynaptic and postsynaptic components of cortical differentiation can be genetically dissociated.
Neuronal heterotopia are seen in various pathologies and are associated with intractable epilepsy. We examined brain tissue from four children with subcortical or periventricular nodular heterotopia of different aetiologies: one with severe epilepsy following focal brain trauma at 17 weeks gestation, one with hemimegalencephaly and intractable epilepsy, one with focal cortical dysplasia and intractable epilepsy, and one dysmorphic term infant with associated hydrocephalus and polymicrogyria. The connectivity of nodules was investigated using histological and carbocyanine dye (DiI) tracing techniques. DiI crystal placement adjacent to heterotopic nodules revealed numerous DiI-labelled fibres within a 2-3 mm radius of the crystals. Although we observed labelled fibres closely surrounding nodules, the majority did not penetrate them. Placement of DiI crystals within nodules also identified a limited number of projections out of the nodules and in one case there was evidence for connectivity between adjacent nodules. The cellular and neurochemical composition of nodules was also examined using immunohistochemistry for calretinin and neuropeptide Y (NPY), which are normally expressed in GABAergic cortical interneurons. Within heterotopic nodules from all cases, numerous calretinin-positive neurons were identified, along with a few cell bodies and many processes positive for NPY. Calretinin-positive neurons within nodules were less morphologically complex than those in the cortex, which may reflect incomplete differentiation into an inhibitory neuronal phenotype. There were also abnormal clusters of calretinin-positive cells in the overlying cortical plate, indicating that the migratory defect which produces heterotopic nodules also affects development of the cortex itself. Thus, heterotopic nodules consisting of multiple neuronal cell types are associated with malformation in the overlying cortical plate, and have limited connectivity with other brain regions. This abnormal development of connectivity may affect neuronal maturation and consequently the balance of excitation and inhibition in neuronal circuits, leading to their epileptogenic potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.