We have developed a simple and quantitative explanation for the relatively low melting temperatures of ionic liquids (ILs). The basic concept was to assess the Gibbs free energy of fusion (Delta(fus)G) for the process IL(s) --> IL(l), which relates to the melting point of the IL. This was done using a suitable Born-Fajans-Haber cycle that was closed by the lattice (i.e., IL(s) --> IL(g)) Gibbs energy and the solvation (i.e., IL(g) --> IL(l)) Gibbs energies of the constituent ions in the molten salt. As part of this project we synthesized and determined accurate melting points (by DSC) and dielectric constants (by dielectric spectroscopy) for 14 ionic liquids based on four common anions and nine common cations. Lattice free energies (Delta(latt)G) were estimated using a combination of Volume Based Thermodynamics (VBT) and quantum chemical calculations. Free energies of solvation (Delta(solv)G) of each ion in the bulk molten salt were calculated using the COSMO solvation model and the experimental dielectric constants. Under standard ambient conditions (298.15 K and 10(5) Pa) Delta(fus)G degrees was found to be negative for all the ILs studied, as expected for liquid samples. Thus, these ILs are liquid under standard ambient conditions because the liquid state is thermodynamically favorable, due to the large size and conformational flexibility of the ions involved, which leads to small lattice enthalpies and large entropy changes that favor melting. This model can be used to predict the melting temperatures and dielectric constants of ILs with good accuracy. A comparison of the predicted vs experimental melting points for nine of the ILs (excluding those where no melting transition was observed and two outliers that were not well described by the model) gave a standard error of the estimate (s(est)) of 8 degrees C. A similar comparison for dielectric constant predictions gave s(est) as 2.5 units. Thus, from very little experimental and computational data it is possible to predict fundamental properties such as melting points and dielectric constants of ionic liquids.
In a pilot study of the dielectric constant of room-temperature ionic liquids, we use dielectric spectroscopy in the megahertz/gigahertz regime to determine the complex dielectric function of five 1-alkyl-3-methylimidazolium salts, from which the static dielectric constant epsilon is obtained by zero-frequency extrapolation. The results classify the salts as moderately polar solvents. The observed epsilon-values at 298.15 K fall between 15.2 and 8.8, and epsilon decreases with increasing chain length of the alkyl residue of the cation. The anion sequence is trifluoromethylsulfonate > tetrafluoroborate approximately tetrafluorophosphate. The results indicate markedly lower polarities than found by spectroscopy with polarity-sensitive solvatochromic dyes.
We have used microwave dielectric relaxation spectroscopy to study the picosecond dynamics of five low-viscosity, highly conductive room temperature ionic liquids based on 1-alkyl-3-methylimidazolium cations paired with the bis((trifluoromethyl)sulfonyl)imide anion. Up to 20 GHz the dielectric response is bimodal. The longest relaxation component at the time scale of several 100 ps reveals strongly nonexponential dynamics and correlates with the viscosity in a manner consistent with hydrodynamic predictions for the diffusive reorientation of dipolar ions. Methyl substitution at the C2 position destroys this correlation. The time constants of the weak second process at the 20 ps time scale are practically the same for each salt. This intermediate process seems to correlate with similar modes in optical Kerr effect spectra, but its physical origin is unclear. The missing high-frequency portion of the spectra indicates relaxation beyond the upper cutoff frequency of 20 GHz, presumably due to subpicosecond translational and librational displacements of ions in the cage of their counterions. There is no evidence for orientational relaxation of long-lived ion pairs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.