This paper introduces Augmented Reality (AR) system to support an astronaut's manual work, it has been developed in two phases. The first phase was developed in Europeans Space Agency's (ESA) project called "EdcAR-Augmented Reality for Assembly, Integration, Testing and Verification, and Operations" and the second phase was developed and evaluated within the Horizon 2020 project "WEKIT-Wearable Experience for Knowledge Intensive Training." The main aim is to create an AR based technological platform for high knowledge manual work support, in the aerospace industry with reasonable user experience. The AR system was designed for the Microsoft HoloLens mixed reality platform, and it was implemented based on a modular architecture. The purpose of the evaluation of the AR system is to prove that reasonable user experience of augmented reality can reduce performance errors while executing a procedure, increase memorability, and improve cost, and time efficiency of the training. The main purpose of the first phase evaluation was to observe and get feedback from the AR system, from user experience point-of-view for the future development. The use case was a filter change in International Space Station (ISS)-Columbus mock-up in the ESA's European Astronaut Centre (EAC). The test group of 14 subjects it included an experienced astronaut, EAC trainers, other EAC personnel, and a student group. The second phase the experiment consisted of an in-situ trial and evaluation process. The augmented reality system was tested at ALTEC facilities in Turin, Italy, where 39 participants were performing an actual real astronaut's procedure, the installation of Temporary Stowage Rack (TSR) on a physical mock-up of an ISS module. User experience evaluation was assessed using comprehensive questionnaires, and interviews, gathering an in-depth feedback on their experience with a platform. This focused on technology acceptance, system usability, smart glasses user satisfaction, user interaction satisfaction, and interviews, gathering an in-depth feedback on their experience with a platform. The analysis of the questionnaires and interviews showed that the scores obtained for user experience, usability, user satisfaction, and technology acceptance were near the desired average. Specifically, The System Usability Scale (SUS) score was 68 indicating that the system usability is already nearly acceptable in the augmented reality platform.
Alzheimer's disease (AD), the most common type of dementia, is characterised by gradual memory loss. There is an increasing global research effort into strategies for early clinic-based diagnosis at the stage where patients present with mild memory problems. Initiating treatment at this stage would slow the progression of the condition and enable more years of good quality life. This paper presents the ongoing development of an augmented reality system using HoloLens that is designed to test an early onset of Alzheimer's disease. The most important aspects in the early AD diagnostics are the symptoms that appear to be connected with early memory loss, in particular spatial memory. The ability to store and retrieve the memory of a particular event involving an association between items such as the place and the object properties is incorporated in a game environment.
Abstract. The WEKIT.one prototype is a platform for immersive procedural training with wearable sensors and Augmented Reality. Focusing on capture and re-enactment of human expertise, this work looks at the unique affordances of suitable hard-and software technologies. The practical challenges of interpreting expertise, using suitable sensors for its capture and specifying the means to describe and display to the novice are of central significance here. We link affordances with hardware devices, discussing their alternatives, including Microsoft Hololens, Thalmic Labs MYO, Alex Posture sensor, MyndPlay EEG headband, and a heart rate sensor. Following the selection of sensors, we describe integration and communication requirements for the prototype. We close with thoughts on the wider possibilities for implementation and next steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.