Programmed cell death (PCD) is usually considered a cell-autonomous suicide program, synonymous with apoptosis. Recent research has revealed that PCD is complex, with at least a dozen cell death modalities. Here, we demonstrate that the large-scale nonapoptotic developmental PCD in the Drosophila ovary occurs by an alternative cell death program where the surrounding follicle cells nonautonomously promote death of the germ line. The phagocytic machinery of the follicle cells, including Draper, cell death abnormality (Ced)-12, and c-Jun N-terminal kinase (JNK), is essential for the death and removal of germ-line–derived nurse cells during late oogenesis. Cell death events including acidification, nuclear envelope permeabilization, and DNA fragmentation of the nurse cells are impaired when phagocytosis is inhibited. Moreover, elimination of a small subset of follicle cells prevents nurse cell death and cytoplasmic dumping. Developmental PCD in the Drosophila ovary is an intriguing example of nonapoptotic, nonautonomous PCD, providing insight on the diversity of cell death mechanisms.
SUMMARY Cell death is a fundamental aspect of development, homeostasis, and disease; yet, our understanding of non-apoptotic forms of cell death is limited. One such form is phagoptosis, in which one cell utilizes phagocytosis machinery to kill another cell that would otherwise continue living. We have previously identified a non-autonomous requirement of phagocytosis machinery for the developmental programmed cell death of germline nurse cells in the Drosophila ovary; however, the precise mechanism of death remained elusive. Here, we show that lysosomal machinery acting in epithelial follicle cells is used to non-autonomously induce the death of nearby germline cells. Stretch follicle cells recruit V-ATPases and chloride channels to their plasma membrane to extracellularly acidify the germline and release cathepsins that destroy the nurse cells. Our results reveal a role for lysosomal machinery acting at the plasma membrane to cause the death of neighboring cells, providing insight into mechanisms driving non-autonomous cell death.
Termites have had a long co-evolutionary history with prokaryotic and eukaryotic gut microbes. Historically, the role of these anaerobic obligate symbionts has been attributed to the nutritional welfare of the host. We provide evidence that protozoa (and/or their associated bacteria) colonizing the hindgut of the dampwood termite Zootermopsis angusticollis, synthesize multiple functional β-1,3-glucanases, enzymes known for breaking down β-1,3-glucans, the main component of fungal cell walls. These enzymes, we propose, may help in both digestion of ingested fungal hyphae and protection against invasion by fungal pathogens. This research points to an additional novel role for the mutualistic hindgut microbial consortia of termites, an association that may extend beyond lignocellulolytic activity and nitrogen fixation to include a reduction in the risks of mycosis at both the individual- and colony-levels while nesting in and feeding on microbial-rich decayed wood.
Billions of cells die and are cleared throughout the development and homeostasis of an organism. Either improper death or clearance can lead to serious illnesses. In the adult Drosophila ovary, germline cells can die by programmed cell death (PCD) at three distinct stages; here we focus on cell death that occurs in mid- and late oogenesis. In mid-oogenesis, the germline of egg chambers can undergo apoptosis in response to nutrient deprivation. In late oogenesis, the nurse cells are eliminated through a developmentally regulated, non-apoptotic cell death. In this chapter, we describe several methods to detect cell death and phagocytosis in the Drosophila ovary. DAPI stains the chromatin of all cells and can be used to detect morphological changes in cells that die by different mechanisms. TUNEL labels fragmented DNA, which can occur in both apoptotic and non-apoptotic death. LysoTracker, an acidophilic dye, marks acidic vesicles and some dying cells; therefore, it can be used to study both death and phagocytosis. We also describe several antibodies that can be used to investigate cell death and/or phagocytosis: active caspase Dcp-1, membrane markers, and lamins. Many of these antibodies can be used in combination with GFP fusion transgenes for further analysis; we show Rab5-GFP and Rab7-GFP, which can be used to study phagocytosis in further detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.