Selenium (Se) is considered a beneficial chemical element for plants, but in high concentrations it may present symptoms of toxicity. The present study aimed to evaluate 11 concentrations of Se (0; 0.1; 0.5; 1; 5; 10; 20; 40; 80; 400; 800 mg.L-1) to determine the low and high (toxicity) critical levels to seed germination of cowpea (Vigna unguiculata). In addition, alterations in the rate of photosynthetic pigments, lipid peroxidation and sugars during the initial growth development of seedlings were analysed. Seeds exposed to 800 mg.L-1 of Se showed a decrease of 20% of seed germination index compared to the control treatment. The decrease in seedling growth reflected in the increase of total sugars and sucrose concentration in both the shoot and root in response to exposure to Se concentration. There was a decrease in the concentration of leaf chlorophyll, carotenoids
This study evaluated the nutritional quality, yield, and storage protein modulation in soybean grains in response to levels and sources of sulfur (S) in a dystrophic Ultisol. We used five levels of S (0, 50, 100, 150 and 200 mg kg-1) and four sources of S (elemental S pastille-ESPA, gypsum-GY, gypsite-GI and elemental S powder-ESPO). Plants treated with 50 mg kg-1 of GY, GI, and ESPO and 200 mg kg-1 of ESPA had the largest grain yield values. Low S supply resulted in lower yields for all S sources tested. Sulfur deficiencies were observed at all levels for ESPA, resulting in lower concentrations of globulin and higher concentration of glutelin and albumin in the grains, possibly because the S content in the leaf was below the range adequate for soybean, leading to in lower yield values. In general, the application of S sources (GY, GI, and ESPO) increased all protein fractions. The results show that proper application of S is essential to optimize soybean yield and increase storage proteins in the grains. The granulometry of ESPA and ESPO fertilizers was a key factor for the availability of S to soybean plants. This study presents relevant information on S fertilization of soybeans, which could provide better grain nutritional quality and increased storage proteins with benefits to animal health.
Iron (Fe) is an essential micronutrient for plants, as a cofactor in multi-heme cytochromes and within iron-sulfur clusters. However, Fe can be toxic at high concentrations. Free Fe in cells can disrupt the cell redox balance toward a pro-oxidant state, generating oxidative stress. The focuses of this review were to elucidate the Fe detoxification strategies used by plants, as well as describe the Fe excess effects on the plant body and its impact on the physiological, morphological and metabolic traits. Therefore, we highlight the importance of evaluating Fe toxicity and provide a paper compilation on Fe detoxification strategies and morpho-physiological responses to excess Fe, directing further research in this segment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.