Articles you may be interested inSurface structures of normal paraffins and cyclohexane monolayers and thin crystals grown on the (111) crystal face of platinum. A lowenergy electron diffraction study
X-ray absorption spectroscopy has been used to investigate binding of selenohomocysteine to cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthase enzymes of Escherichia coli. We have shown previously [Peariso et al. (1998) J. Am. Chem. Soc. 120, 8410-8416] that the Zn sites in both enzymes show an increase in the number of sulfur ligands when homocysteine binds. The present data provide direct evidence that this change is due to coordination of the substrate to the Zn. Addition of L-selenohomocysteine to either MetE or the N-terminal fragment of MetH, MetH(2-649), causes changes in the zinc X-ray absorption near-edge structure that are remarkably similar to those observed following the addition of L-homocysteine. Zinc EXAFS spectra show that the addition of L-selenohomocysteine changes the coordination environment of the zinc in MetE from 2S + 2(N/O) to 2S + 1(N/O) + 1Se and in MetH(2-649) from 3S + 1(N/O) to 3S + 1Se. The Zn-S, Zn-Se, and Se-S bond distances determined from the zinc and selenium EXAFS data indicate that the zinc sites in substrate-bound MetE and MetH(2-649) both have an approximately tetrahedral geometry. The selenium edge energy for selenohomocysteine shifts to higher energy when binding to either methionine synthase enzyme, suggesting that there is a slight decrease in the effective charge of the selenium. Increases in the Zn-Cys bond distances upon selenohomocysteine binding together with identical magnitudes of the shifts to higher energy in the Se XANES spectra of MetE and MetH(2-649) suggest that the Lewis acidity of the Zn sites in these enzymes appears the same to the substrate and is electronically buffered by the Zn-Cys interaction.
Therapeutic monoclonal antibodies are currently delivered mainly via the intravenous route, since large volumes are often required to deliver a therapeutic dose. Administration via the subcutaneous route would have several therapeutic advantages; the absorption mechanisms for antibodies dosed subcutaneously are poorly understood. This study was conducted to develop a better understanding of the mechanisms governing the subcutaneous absorption and trafficking of monoclonal antibodies. Specifically, the role of the lymphatic system in the absorption and prolonged plasma exposure of trastuzumab was explored in thoracic lymph duct-cannulated rats after SC and IV dosing. A population pharmacokinetic model was developed in S-ADAPT to simultaneously fit all plasma and lymph concentrations and to predict the pharmacokinetics in nonlymph duct-cannulated animals. The estimated absolute bioavailability of trastuzumab after SC administration in rats was 85.5%. Following SC administration, 53.1% of the trastuzumab dose was absorbed via a first-order process (mean absorption time: 99.6 h) into the peripheral lymph compartment and 32.4% of the dose was absorbed by a Michaelis-Menten process into the central compartment. Recovery in thoracic lymph over 30 h was 26.7% after SC and 44.1% after IV administration. This study highlights for the first time the significant role of the lymphatic system in maintaining the long plasma exposure of trastuzumab, with the model predicting an extensive distribution of this monoclonal antibody into the lymph following SC and IV administration. This extensive direct absorption from the SC injection site into lymph may enable novel therapeutic strategies for the treatment of lymph resident metastatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.