Abstract. We construct anisotropic conductivities with the same Dirichlet-toNeumann map as a homogeneous isotropic conductivity. These conductivities are singular close to a surface inside the body.
We construct anisotropic conductivities in dimension 3 that give rise to the same voltage and current measurements at the boundary of a body as a homogeneous isotropic conductivity. These conductivities are non-zero, but degenerate close to a surface inside the body.
There has recently been considerable interest in the possibility, both theoretical and practical, of invisibility (or "cloaking") from observation by electromagnetic (EM) waves. Here, we prove invisibility with respect to solutions of the Helmholtz and Maxwell's equations, for several constructions of cloaking devices. The basic idea, as in the papers [GLU2, GLU3, Le, PSS1], is to use a singular transformation that pushes isotropic electromagnetic parameters forward into singular, anisotropic ones. We define the notion of finite energy solutions of the Helmholtz and Maxwell's equations for such singular electromagnetic parameters, and study the behavior of the solutions on the entire domain, including the cloaked region and its boundary. We show that, neglecting dispersion, the construction of [GLU3,PSS1]
We describe new configurations of electromagnetic (EM) material parameters, the electric permittivity and magnetic permeability , which allow one to construct devices that function as invisible tunnels. These allow EM wave propagation between the regions at the two ends of a tunnel, but the tunnels themselves and the regions they enclose are not detectable to lateral EM observations. Such devices act as wormholes with respect to Maxwell's equations and effectively change the topology of space vis-à-vis EM wave propagation. We suggest several applications, including devices behaving as virtual magnetic monopoles, invisible cables, and scopes for MRI-assisted surgery.
We describe recent theoretical and experimental progress on making objects invisible to detection by electromagnetic waves. Ideas for devices that would have once seemed fanciful may now be at least approximately implemented physically using a new class of artificially structured materials called metamaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.