The concept of 'archaeophytes' (alien taxa which became established in a study area before AD 1500) is widely used in floristic analyses in central and northern Europe, but few authors have applied it to the British flora. Six criteria for the recognition of archaeophytes are outlined, drawing upon evidence of fossil and recent history, current habitat and European and extra-European distribution. These are used to identify 157 probable archaeophytes in Britain. Only five of these are known from fossil records from the Neolithic; most are first recorded in archaeological contexts in the Late Bronze Age, Iron Age, Roman or Medieval periods. As a group, archaeophytes (unlike neophytes) have declined in Britain in the 20th century. Comparison of the accepted status of these species in the Czech Republic, Germany, Poland and Finland demonstrates that over 50% are treated as archaeophytes in central Europe, but in Finland many are absent or only present as casual introductions. Species regarded as archaeophytes in these countries but as natives in Britain are also reviewed. The indirect nature of the evidence used to identify archaeophytes means that it is usually impossible to be certain about the history of a species; in particular, archaeophytes which have successfully invaded semi-natural habitats are likely to be overlooked as natives. The suggestion that a species is an archaeophyte is best regarded as a hypothesis to be tested by further studies. There is considerable scope for archaeological investigations aimed at addressing these botanical problems.
We report here the first integrated investigation of both ancient DNA and proteins in archaeobotanical samples: medieval grape (Vitis vinifera L.) seeds, preserved by anoxic waterlogging, from an early medieval (seventh–eighth century A.D.) Byzantine rural settlement in the Salento area (Lecce, Italy) and a late (fourteenth–fifteenth century A.D.) medieval site in York (England). Pyrolysis gas chromatography mass spectrometry documented good carbohydrate preservation, whilst amino acid analysis revealed approximately 90% loss of the original protein content. In the York sample, mass spectrometry-based sequencing identified several degraded ancient peptides. Nuclear microsatellite locus (VVS2, VVMD5, VVMD7, ZAG62 and ZAG79) analysis permitted a tentative comparison of the genetic profiles of both the ancient samples with the modern varieties. The ability to recover microsatellite DNA has potential to improve biomolecular analysis on ancient grape seeds from archaeological contexts. Although the investigation of five microsatellite loci cannot assign the ancient samples to any geographic region or modern cultivar, the results allow speculation that the material from York was not grown locally, whilst the remains from Supersano could represent a trace of contacts with the eastern Mediterranean.Electronic supplementary materialThe online version of this article (doi:10.1007/s00114-009-0629-3) contains supplementary material, which is available to authorized users.
What conditions preserve archaeology, and what conditions accelerate decay? Here experts from York, using the wealth of experience and data gathered from that city, discuss the issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.