Each year, 500,000 patients are treated with radiotherapy for head and neck cancer, resulting in relatively high survival rates. However, in 40% of patients, quality of life is severely compromised because of radiation-induced impairment of salivary gland function and consequent xerostomia (dry mouth). New radiation treatment technologies enable sparing of parts of the salivary glands. We have determined the parts of the major salivary gland, the parotid gland, that need to be spared to ensure that the gland continues to produce saliva after irradiation treatment. In mice, rats, and humans, we showed that stem and progenitor cells reside in the region of the parotid gland containing the major ducts. We demonstrated in rats that inclusion of the ducts in the radiation field led to loss of regenerative capacity, resulting in long-term gland dysfunction with reduced saliva production. Then we showed in a cohort of patients with head and neck cancer that the radiation dose to the region of the salivary gland containing the stem/progenitor cells predicted the function of the salivary glands one year after radiotherapy. Finally, we showed that this region of the salivary gland could be spared during radiotherapy, thus reducing the risk of post-radiotherapy xerostomia.
Dysgeusia is a common oral side effect of cancer therapy (radiotherapy, chemotherapy, or combined modality therapy) and often impacts negatively on quality of life. From the current literature, there does not appear to be a predictable way of preventing or treating dysgeusia.
There is a pressing need for the development of visual aids that will facilitate the detection of oral premalignant lesions (OPLs) with a high-risk of progression. Preliminary data suggest that toluidine blue stain may be preferentially retained by OPLs with high-risk molecular clones. In this study, we monitored OPLs from 100 patients without any history of oral cancer for an average of 44 months in order to evaluate the association of toluidine blue status with clinicopathologic risk factors, molecular patterns (microsatellite analysis on seven chromosome arms: 3p, 9p, 4q, 8p, 11q, 13q, and 17p) and outcome. Toluidine blue-positive staining correlated with clinicopathologic risk factors and high-risk molecular risk patterns. Significantly, a >6-fold elevation in cancer risk was observed for toluidine blue-positive lesions, with positive retention of the dye present in 12 of the 15 lesions that later progressed to cancer (P = 0.0008). This association of toluidine blue status with risk factors and outcome was evident even when the analysis was restricted to OPLs with low-grade or no dysplasia. Our results suggest the potential use of toluidine blue in identifying high-risk OPLs.
Of the various natural agents reviewed here, the available evidence supported a guideline only for two agents: a suggestion in favor of zinc and a recommendation against glutamine, in the treatment settings listed above. Well-designed studies of other natural agents are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.