This chapter proposes to analyze two configurations of neural networks to compose the expert set in the development of a multilevel speech signal pattern recognition system of 30 commands in the Brazilian Portuguese language. Then, multilayer perceptron (MLP) and learning vector quantization (LVQ) networks have their performances verified during the training, validation and test stages in the speech signal recognition, whose patterns are given by two-dimensional time matrices, result from mel-cepstral coefficients coding by the discrete cosine transform (DCT). In order to avoid the pattern separability problem, the patterns are modified by a nonlinear transformation to a high-dimensional space through a suitable set of Gaussian radial base functions (GRBF). The performance of MLP and LVQ experts is improved and configurations are trained with few examples of each modified pattern. Several combinations were performed for the neural network topologies and algorithms previously established to determine the network structures with the best hit and generalization results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.