A surface electric field model is used to estimate the UK surface E-field during the 30 th October 2003 severe geomagnetic storm. This model is coupled with a power grid model to determine the flow of geomagnetically induced currents (GIC) through the Scottish part of the UK grid. Model data are compared with GIC measurements at four sites in the power network. During this storm measured and modelled GIC levels exceeded 40A and the surface electric field reached 5V/km at sites in the UK (compared with quiet time levels of less than 0.1 V/km). The electric field and grid models now form part of a GIC monitoring, analysis and warning software package with web interface, developed for use by the grid operator. This package also contains a daily geomagnetic activity forecast service, a solar wind shock detector, for geomagnetic storm warning, and a near real time geomagnetic data stream, for storm monitoring. 2 AGU Index Terms
Abstract. Geomagnetically induced currents (GIC) flowing in technological systems on the ground are a direct manifestation of space weather. Due to the proximity of very dynamic ionospheric current systems, GIC are of special interest at high latitudes, where they have been known to cause problems, for example, for normal operation of power transmission systems and buried pipelines. The basic physics underlying GIC, i.e. the magnetosphere -ionosphere interaction and electromagnetic induction in the ground, is already quite well known. However, no detailed study of the drivers of GIC has been carried out and little is known about the relative importance of different types of ionospheric current systems in terms of large GIC. In this study, the geomagnetic storm of 6-7 April 2000 is investigated. During this event, large GIC were measured in technological systems, both in Finland and in Great Britain. Therefore, this provides a basis for a detailed GIC study over a relatively large regional scale. By using GIC data and corresponding geomagnetic data from north European magnetometer networks, the ionospheric drivers of large GIC during the event were identified and analysed. Although most of the peak GIC during the storm were clearly related to substorm intensifications, there were no common characteristics discernible in substorm behaviour that could be associated with all the GIC peaks. For example, both very localized ionospheric currents structures, as well as relatively large-scale propagating structures were observed during the peaks in GIC. Only during the storm sudden commencement at the beginning of the event were large-scale GIC evident across northern Europe with coherent behaviour. The typical duration of peaks in GIC was also quite short, varying between 2-15 min.
S U M M A R YMagnetotelluric (MT) data, in the form of MT tensors, are used to estimate directly the size and spatial distribution of the electric field in northern England and southern Scotland with the aim of predicting the flow of geomagnetically induced currents (GIC) in power networks in the region. MT and Geomagnetic Deep Sounding data from a number of different field campaigns, at a period of 750 s, are employed. The MT data are cast in the form of telluric vectors, which allow a joint hypothetical event analysis (HEA) of both Geomagnetic Deep Sounding and MT data. This analysis reveals qualitatively the pervasive effects of electric field distortion in the region. Two approaches are taken to understand how the spatial structure of the regional electromagnetic field is affected by local distortions, and what the origin of these distortions might be. The dimensionality, and form of electric field distortion, of the MT tensors is investigated using the Weaver et al. and Bahr classification schemes, and by examining the misfit of a galvanic distortion model as a function of rotation angle. At sites where the galvanic distortion model is found to be appropriate the regional MT tensors are recovered using tensor decomposition techniques. It is found that recovering the regional MT response reconciles the geometry of induced currents implied by the MT data with that of the Magnetic Variation anomalies. Lilley's central impedances are used to calculate rotationally invariant effective telluric responses. In the Southern Uplands the magnitude of the effective telluric response is approximately 0.25-0.5 mV km −1 nT −1 , but as the Southern Uplands Fault is approached it rises steadily to 3 mV km −1 nT −1 . In the Midland Valley, the effective telluric response is approximately 0.5 mV km −1 nT −1 which rises steadily to 2.5 mV km −1 nT −1 as the Southern Uplands and Highland Boundary Faults are approached to the southeast and northwest, respectively. Therefore, the increase in the magnitude of the effective telluric response correlates with the approach of a major tectonic boundary such as the Southern Uplands Fault. These results show that the induced electric field strength varies considerably throughout the central Scotland region. In addition, the HEA indicates that due to lateral changes in conductivity structure the direction of the electric field deviates significantly from the regional direction implied by the polarization azimuth of the primary geomagnetic induction. Therefore, any attempts to model the flow of GIC in the region need to account for the spatial variation of both the magnitude and azimuth of the electric field.
Summary. The Earth's lithosphere and mantle responds to Space Weather through time-varying, depthdependent induced magnetic and electric fields. Understanding the properties of these electromagnetic fields is a key consideration in modelling the hazard to technological systems from Space Weather. In this paper we review current understanding of these fields, in terms of regional and global scale geology and geophysics. We highlight progress towards integrated European-scale models of geomagnetic and geoelectric fields, specifically for the purposes of modelling geomagnetically induced currents in power grids and pipelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.