The progressive loss and fragmentation of longleaf pine forests throughout the southeastern United States has led to severe declines in habitat specialists such as the federally listed gopher tortoise Gopherus polyphemus. However, little is known of the range-wide historical genetic structure of this species or how habitat loss may have impacted the genetic diversity of this species over time. As genetic data are lacking in many parts of the gopher tortoise range, management of federally listed populations in Louisiana and Mississippi have been based on conservation units delineated by rivers. However, this current management strategy has been formulated without any knowledge of how riverine barriers might relate to genetic population structure. Here, we examine variability of mitochondrial and nuclear microsatellite markers in gopher tortoise populations across their natural range in the southeastern United States. Results from the mitochondrial data showed a historical phylogenetic break that is coincident with the Apalachicola River and a novel population assemblage located within western Georgia. Genetic structure based on microsatellite loci revealed high levels of genetic differentiation in some regions and a pattern of isolation by distance at two spatial scales. We also find that rivers across the federally listed portion of the range, do not significantly influence gene flow. Coalescent analyses of population demographic change in gopher tortoises indicate evidence of an ancient and severe population decline at sites across the range. Findings from this study provide important information that will aid in the identification of distinct population units for management and in the formulation of recommendations for the future maintenance of genetic diversity in this species.Population genetic structure of threatened tortoise R. W. Clostio et al.Population genetic structure of threatened tortoise R. W. Clostio et al.
Wild crop relatives are an important source of genetic diversity for crop improvement. Diversity estimates are generally lacking for many wild crop relatives. The objective of the present study was to analyze how genetic diversity is distributed within and among populations of the wild rice species Oryza glumaepatula in Costa Rica. We also evaluated the likelihood of gene flow between wild and commercial rice species because the latter is commonly sympatric with wild rice populations. Introgression may change wild species by incorporating alleles from domesticated species, increasing the risk of losing original variation. Specimens from all known O. glumaepatula populations in Costa Rica were analyzed with 444 AFLP markers to characterize genetic diversity and structure. We also compared genetic diversity estimates between O. glumaepatula specimens and O. sativa commercial rice. Our results showed that O. glumaepatula populations in Costa Rica have moderately high levels of genetic diversity, comparable to those found in South American populations. Despite the restricted distribution of this species in Costa Rica, populations are fairly large, reducing the effects of drift on genetic diversity. We found a dismissible but significant structure (θ = 0.02 ± 0.001) among populations. A Bayesian structure analysis suggested that some individuals share a significant proportion of their genomes with O. sativa. These results suggest that gene flow from cultivated O. sativa populations may have occurred in the recent past. These results expose an important biohazard: recurrent hybridization may reduce the genetic diversity of this wild rice species. Introgression may transfer commercial traits into O. glumaepatula, which in turn could alter genetic diversity and increase the likelihood of local extinction. These results have important implications for in situ conservation strategies of the only wild populations of O. glumaepatula in Costa Rica.
Wild crop relatives are an important source of genetic diversity for crop improvement.However, gene flow from cultivated species into wild species may prove detrimental.Introgression may lead to changes in wild species by incorporating alleles from domesticated species, which may increase the likelihood of extinction. The objective of the present study is to analyze how genetic diversity is distributed within and among populations of the wild rice species Oryza glumaepatula in Costa Rica. We also evaluated if there is evidence of introgression between wild rice and commercial varieties of O. sativa since it is cultivated commonly in close proximity to wild rice populations. Individuals from all known O. glumaepatula populations in Costa Rica were collected. With the aid of 455 AFLP markers, we characterized the genetic diversity and structure among seven populations in northern Costa Rica. Given the dominant nature of our markers, Bayesian estimates of genetic structure were used. We also compared genetic diversity estimates 28Individuals from all known O. glumaepatula populations in Costa Rica were collected. 29With the aid of 444 AFLP markers, we characterized the genetic diversity and structure 30 among seven populations in northern Costa Rica. Given the dominant nature of our 31 markers, Bayesian estimates of genetic structure were used. We also compared genetic
Wild crop relatives are an important source of genetic diversity for crop improvement.However, gene flow from cultivated species into wild species may prove detrimental.Introgression may lead to changes in wild species by incorporating alleles from domesticated species, which may increase the likelihood of extinction. The objective of the present study is to analyze how genetic diversity is distributed within and among populations of the wild rice species Oryza glumaepatula in Costa Rica. We also evaluated if there is evidence of introgression between wild rice and commercial varieties of O. sativa since it is cultivated commonly in close proximity to wild rice populations. Individuals from all known O. glumaepatula populations in Costa Rica were collected. With the aid of 455 AFLP markers, we characterized the genetic diversity and structure among seven populations in northern Costa Rica. Given the dominant nature of our markers, Bayesian estimates of genetic structure were used. We also compared genetic diversity estimates 28Individuals from all known O. glumaepatula populations in Costa Rica were collected. 29With the aid of 444 AFLP markers, we characterized the genetic diversity and structure 30 among seven populations in northern Costa Rica. Given the dominant nature of our 31 markers, Bayesian estimates of genetic structure were used. We also compared genetic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.