Mechanical damage in form of dents, cracks, gouges, and scratches are common in pipelines. Sometimes, these damages form in proximity of each other and act as one defect in the pipe wall. The combined defects have been found to be more injurious than individual defects. One of the combined defects in pipeline comprises of a crack in a dent, also known as dent-crack defect. This paper discusses the development of finite element models using extended finite element criterion (XFEM) in Abaqus to predict burst pressure of specimens of API X70 pipeline with restrained and unrestrained concentric dent-crack defects. The models are calibrated and validated using results of full-scale burst tests. The effects of crack length, crack depth, dent depth, and denting pressure on burst pressure are investigated. The results show that restrained dent-crack defects with shallow cracks (depth less than 50% wall thickness) inside dents do not affect pipeline operations at maximum allowable operating pressure if crack lengths are less than 200 mm. Releasing restrained dent-cracks when the pressure is at maximum allowable operating pressure can cause propagation of deep cracks (depth of 50% wall thickness or more) longer than 60 mm. However, only very long cracks (200 mm and higher) propagate to burst the pipe. Cracks of depth less than 20% of wall thickness inside dents formed at zero pressure are not propagated by the maximum allowable operating pressure. Dent-crack defects having dents of depth less than 2% outside diameter of pipe behave as plain cracks if the dents are formed at zero denting pressure but are more injurious than plain cracks if the dents are formed in pressurized pipes.
Cracks and corrosion in pipelines can occur simultaneously, representing a hybrid defect known as cracks in corrosion (CIC), which is often difficult to model using the available assessment codes or methods. As a result, detailed modeling of CIC has not been studied extensively. In this study, the extended finite element method (XFEM) has been applied to predict the failure pressures of CIC defects in API 5L Grade X42 and X52 pipes. The pipes were only subjected to internal pressure and the XFEM models were validated using full-scale burst tests available in the literature. Several CIC models with constant total defect depths (55%, and 60% of wall thickness) were constructed to investigate the effect of the initial crack depth on the failure pressure. The failure criterion was defined when wall penetration occurred due to crack growth, i.e., the instance the crack reached the innermost element of the pipe wall mesh. It was observed that for shorter cracks, the failure pressure decreased with the increase of the initial crack depth. The results indicated that the CIC defect could be treated as crack-only defects when the initial crack depth exceeded 50% of the total defect depth. However, for longer cracks, the initial crack depth was found to have a negligible effect on the failure pressure, implying that the CIC defect could be treated as either a crack or a corrosion utilizing the available assessment methods.
Coating and cathodic protection degradation can result in the generation of several types of flaws in pipelines. With the increasing number of aging pipelines, such defects can constitute serious concerns for pipeline integrity. When flaws are detected in pipelines, it is extremely important to have an accurate assessment of the associated failure pressure, which would inform the appropriate remediation decision of repairing or replacing the defected pipelines in a timely manner. Cracks-in-corrosion (CIC) represent a class of defect, for which there are no agreed upon method of assessment, with no existing analytical or numerical models to predict their failure pressures. This paper aims to create a set of validated numerical finite element analysis models that are suitable for accurately predicting the failure pressure of 3D cracks-in-corrosion defects using the eXtended Finite Element Method (XFEM) technique. The XFEM for this study was performed using the commercially available software package, ABAQUS Version 6.19. Five burst tests of API 5L X60 specimens with different defect depths (varying from 52% to 66%) that are available in the literature were used to calibrate the XFEM damage parameters (the maximum principal strain and the fracture energy). These parameters were varied until a reasonable match between the numerical results and the experimental measurements was achieved. Symmetry was used to reduce the computation time. A longitudinally oriented CIC defect was placed at the exterior of the pipe. The profile of the corroded area was assumed to be semi-elliptical. The pressure was monotonically increased in the XFEM model until the crack or damage reached the inner surface of the pipe. The results showed that the extended finite element predictions were in good agreement with the experimental data, with an average error of 5.87%, which was less conservative than the reported finite element method predictions with an average error of 17.4%. Six more CIC models with the same pipe dimension but different crack depths were constructed, in order to investigate the relationship between crack depth and the failure pressure. It was found that the failure pressure decreased with increasing crack depth; when the crack depth exceeded 75% of the total defect depth, the CIC defect could be treated as crack-only defects, since the failure pressure for the CIC model approaches that for the crack-only model for ratios of the crack depth to the total defect depth of 0.75 and 1. The versatility of several existing analytical methods (RSTRENG, LPC and CorLAS) in predicting the failure pressure was also discussed. For the corrosion-only defects, the LPC method predicted the closest failure pressure to that obtained using XFEM (3.5% difference). CorLAS method provided accurate results for crack-only defects with 7% difference. The extended finite element method (XFEM) was found to be very effective in predicting the failure pressure. In addition, compared to the traditional Finite Element Method (FEM) which requires extremely fine meshes and is impractical in modelling a moving crack, the XFEM is computationally efficient while providing accurate predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.