We present an economical theory of natural electroweak symmetry breaking, generalizing an approach based on deconstruction. This theory is the smallest extension of the Standard Model to date that stabilizes the electroweak scale with a naturally light Higgs and weakly coupled new physics at TeV energies. The Higgs is one of a set of pseudo Goldstone bosons in an SU (5)/SO(5) nonlinear sigma model. The symmetry breaking scale f is around a TeV, with the cutoff Λ < ∼ 4πf ∼ 10 TeV. A single electroweak doublet, the "little Higgs", is automatically much lighter than the other pseudo Goldstone bosons. The quartic self-coupling for the little Higgs is generated by the gauge and Yukawa interactions with a natural size O(g 2 , λ 2 t ), while the top Yukawa coupling generates a negative mass squared triggering electroweak symmetry breaking. Beneath the TeV scale the effective theory is simply the minimal Standard Model. The new particle content at TeV energies consists of one set of spin one bosons with the same quantum numbers as the electroweak gauge bosons, an electroweak singlet quark with charge 2/3, and an electroweak triplet scalar. One loop quadratically divergent corrections to the Higgs mass are cancelled by interactions with these additional particles.
Bekenstein has proposed the bound S < pi M_P^2 L^2 on the total entropy S in
a volume L^3. This non-extensive scaling suggests that quantum field theory
breaks down in large volume. To reconcile this breakdown with the success of
local quantum field theory in describing observed particle phenomenology, we
propose a relationship between UV and IR cutoffs such that an effective field
theory should be a good description of Nature. We discuss implications for the
cosmological constant problem. We find a limitation on the accuracy which can
be achieved by conventional effective field theory: for example, the minimal
correction to (g-2) for the electron from the constrained IR and UV cutoffs is
larger than the contribution from the top quark.Comment: 5 pages, no figures minor clarifications, refs adde
We propose a new class of four-dimensional theories for natural electroweak symmetry breaking, relying neither on supersymmetry nor on strong dynamics at the TeV scale. The new TeV physics is perturbative, and radiative corrections to the Higgs mass are finite. The softening of this mass occurs because the Higgs is an extended object in theory space, resulting in an accidental symmetry. A novel Higgs potential emerges naturally, requiring a second
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.