The fungal toxin gliotoxin induces apoptotic cell death in a variety of cells. Apoptosis induced in thymocytes by gliotoxin is rapid, and DNA fragmentation is observable within 4 h treatment. Apoptosis induced by gliotoxin is calcium-independent and unaffected by protein synthesis inhibitors. We have previously shown that gliotoxin results in phosphorylation of a 16.3-kDa protein within 10 min treatment of thymocytes. Here we show that this protein is histone H3 and phosphorylation occurs on Ser-10. Cyclic AMP levels and activity of protein kinase A (PKA) are raised in cells treated with gliotoxin. Apoptosis is inhibited by genistein which also inhibits PKA and histone H3 phosphorylation. Apoptosis is also inhibited by a number of specific inhibitors of PKA suggesting apoptosis induced by gliotoxin is modulated by this kinase. The agents forskolin and cholera toxin do not induce rapid phosphorylation of H3 although some increase in phosphorylation of H3 does occur after 8 h with these agents. Forskolin and cholera toxin also induce apoptosis but over a longer time course than gliotoxin. In all cases levels of apoptosis correlate with degree of H3 phosphorylation. Cells treated with gliotoxin show an early sensitivity to micrococcal nuclease and DNase I digestion indicating a functional relationship between DNA fragmentation and H3 phosphorylation.
Abstract.The in vitro cytotoxicities of a number of gold(I), silver(I) and copper(I) complexes containing chiral tertiary phosphine ligands have been examined against the mouse tumour cell lines P815 mastocytoma, B16 melanoma [gold(I) and silver(I) compounds] and P388 leukaemia [gold(I) complexes only] with many of the complexes having IC50 values comparable to that of the reference compounds cis-diamminedichloroplatinum(ll), cisplatin, and bis[1,2-bis(diphenylphosphino)ethane]gold(I) iodide. The chiral tertiary phosphine ligands used in this study include (R)-(2-aminophenyl)methylphenylphosphine; (R,R)-, (S,S)-and (R*,R*)-l,2-phenylenebis(methylphenylphosphine); and (R,R )-, (S,S)-and (R*, R')-bis{(2-diphenylphosphinoethyl)phenylphosphino}ethane. The in vitro cytotoxicities of gold(I) and silver(I) complexes containing the optically active forms of the tetra(tertiary phosphine) have also been examined against the human ovarian carcinoma cell lines 41M and CH1, and the cisplatin resistant 41McisR, CHlcisR and SKOV-3 tumour models. IC5o values in the range 0.01 0.04 #M were determined for the most active compounds, silver(I) complexes of the tetra(tertiary phosphine). Furthermore, the chirality of the ligand appeared to have little effect on the overall activity of the complexes: similar IC50 data were obtained for complexes of a particular metal ion with each of the stereoisomeric forms of a specific ligand.Introduction.
Phosphatidylserine (PS) exposure on propidium iodide negative cells using FITC labelled annexin-V has been used to quantify apoptosis in vitro and in vivo. Detection of PS within cells undergoing necrosis is also possible if labelled annexin-V specific for PS enters the cell following early membrane damage. Necrotic or late apoptotic cells can be excluded from flow cytometric analysis using propidium iodide which enters and stains cells with compromised membrane integrity. Here we show that thymocytes undergoing death exclusively by necrosis show early exposure of PS prior to loss of membrane integrity. This early exposure of PS occurs in cells treated with agents which both raise intracellular calcium levels and are also capable of interacting with protein thiol groups. We also demonstrate that PS exposure in thymocytes induced to undergo apoptosis by three different agents does not correlate with calcium rises but correlates with and precedes DNA fragmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.