12 identical twin pairs discordant for non-insulin-dependent diabetes mellitus (NIDDM) were studied for insulin sensitivity (euglycemic insulin clamp, 40 mU/m2 per min), hepatic glucose production (HGP, [3-3H] glucose infusion), and insulin secretion (oral glucose tolerance test and hyperglycemic [12 mM] clamp, including glucagon administration). Five of the nondiabetic twins had normal and seven had impaired glucose tolerance. 13 matched, healthy subjects without a family history of diabetes were included as control subjects. The NIDDM twins were more obese compared with their non-diabetic co-twins. The nondiabetic twins were insulin resistant and had a delayed insulin and C-peptide response during oral glucose tolerance tests compared with controls. Furthermore, the nondiabetic twins had a decreased first-phase insulin response and a decreased maximal insulin secretion capacity during hyperglycemic clamping and intravenous glucagon administration. Nondiabetic twins and controls had similar rates of HGP. Compared with both nondiabetic twins and controls, the NIDDM twins had an elevated basal rate of HGP, a further decreased insulin sensitivity, and a further impaired insulin secretion pattern as determined by all tests. In conclusion, defects of both in vivo insulin secretion and insulin action are present in non-and possibly prediabetic twins who possess the necessary NIDDM susceptibility genes. However, all defects of both insulin secretion and glucose metabolism are expressed quantitatively more severely in their identical co-twins with overt NIDDM. (J. Clin. Invest. 1995. 95:690-698.)
Genetic and environmental factors contribute to age-dependent susceptibility to type 2 diabetes. Recent studies have reported reduced expression of PPARγ coactivator 1α (PGC-1α) and PGC-1β genes in skeletal muscle from type 2 diabetic patients, but it is not known whether this is an inherited or acquired defect. To address this question we studied expression of these genes in muscle biopsies obtained from young and elderly dizygotic and monozygotic twins without known diabetes before and after insulin stimulation and related the expression to a Gly482Ser variant in the PGC-1α gene. Insulin increased and aging reduced skeletal muscle PGC-1α and PGC-1β mRNA levels. This age-dependent decrease in muscle gene expression was partially heritable and influenced by the PGC-1α Gly482Ser polymorphism. In addition, sex, birth weight, and aerobic capacity influenced expression of PGC-1α in a complex fashion. Whereas expression of PGC-1α in muscle was positively related to insulin-stimulated glucose uptake and oxidation, PGC-1β expression was positively related to fat oxidation and nonoxidative glucose metabolism. We conclude that skeletal muscle PGC-1α and PGC-1β expression are stimulated by insulin and reduced by aging. The data also suggest different regulatory functions for PGC-1α and PGC-1β on glucose and fat oxidation in muscle cells. The finding that the age-dependent decrease in the expression of these key genes regulating oxidative phosphorylation is under genetic control could provide an explanation by which an environmental trigger (age) modifies genetic susceptibility to type 2 diabetes
Birth weight (BW) variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. These associations have been proposed to reflect the lifelong consequences of an adverse intrauterine environment. In earlier work, we demonstrated that much of the negative correlation between BW and adult cardio-metabolic traits could instead be attributable to shared genetic effects. However, that work and other previous studies did not systematically distinguish the direct effects of an individual’s own genotype on BW and subsequent disease risk from indirect effects of their mother’s correlated genotype, mediated by the intrauterine environment. Here, we describe expanded genome-wide association analyses of own BW (n=321,223) and offspring BW (n=230,069 mothers), which identified 278 independent association signals influencing BW (214 novel). We used structural equation modelling to decompose the contributions of direct fetal and indirect maternal genetic influences on BW, implicating fetal- and maternal-specific mechanisms. We used Mendelian randomization to explore the causal relationships between factors influencing BW through fetal or maternal routes, for example, glycemic traits and blood pressure. Direct fetal genotype effects dominate the shared genetic contribution to the association between lower BW and higher type 2 diabetes risk, whereas the relationship between lower BW and higher later blood pressure (BP) is driven by a combination of indirect maternal and direct fetal genetic effects: indirect effects of maternal BP-raising genotypes act to reduce offspring BW, but only direct fetal genotype effects (once inherited) increase the offspring’s later BP. Instrumental variable analysis using maternal BW-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring BP. In successfully separating fetal from maternal genetic effects, this work represents an important advance in genetic studies of perinatal outcomes, and shows that the association between lower BW and higher adult BP is attributable to genetic effects, and not to intrauterine programming.
Subjects with a low birth weight (LBW) display increased risk of developing type 2 diabetes (T2D). We hypothesized that this is associated with defects in muscle adaptations following acute and regular physical activity, evident by impairments in the exercise-induced activation of AMPK signaling. We investigated 21 LBW and 21 normal birth weight (NBW) subjects during 1 h of acute exercise performed at the same relative workload before and after 12 wk of exercise training. Multiple skeletal muscle biopsies were obtained before and after exercise. Protein levels and phosphorylation status were determined by Western blotting. AMPK activities were measured using activity assays. Protein levels of AMPKα1 and -γ1 were significantly increased, whereas AMPKγ3 levels decreased with training independently of group. The LBW group had higher exercise-induced AMPK Thr(172) phosphorylation before training and higher exercise-induced ACC2 Ser(221) phosphorylation both before and after training compared with NBW. Despite exercise being performed at the same relative intensity (65% of Vo2peak), the acute exercise response on AMPK Thr(172), ACC2 Ser(221), AMPKα2β2γ1, and AMPKα2β2γ3 activities, GS activity, and adenine nucleotides as well as hexokinase II mRNA levels were all reduced after exercise training. Increased exercise-induced muscle AMPK activation and ACC2 Ser(221) phosphorylation in LBW subjects may indicate a more sensitive AMPK system in this population. Long-term exercise training may reduce the need for AMPK to control energy turnover during exercise. Thus, the remaining γ3-associated AMPK activation by acute exercise after exercise training might be sufficient to maintain cellular energy balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.