Oxidative DNA damage, linked pathogenically to a variety of diseases such as cancer and ageing, can be investigated by measuring specific DNA repair products in urine. Within the last decade, since it was established that such products were excreted into urine, progress in their analysis in urine has been limited. Guanine is the DNA base most prone to oxidation. We present a method for determination of the urinary 8-hydroxylated species of guanine, based on direct injection of urine onto a high-performance liquid chromatography (HPLC)-tandem mass spectrometry system. The analysis covers the 8-hydroxylated base, ribonucleoside and deoxynucleoside, and the corresponding non-oxidised species. Without pre-treatment of urine the detection limits for the nucleobases are approximately 2 nM (50 fmol injected) and for the nucleosides approximately 0.5 nM (12.5 fmol injected). Previously, liquid chromatography of the nucleobases has been problematic but is made possible by low-temperature reverse-phase C18 chromatography, a method that increases retention on the column. In the case of the nucleosides, retention was almost total and provides a means for on-column concentration of larger urine samples and controlled high peak gradient elution. The total excretion of 8-hydroxylated guanine species was 212 nmol/24 h. The oxidised base accounted for 64%, the ribonucleoside for 23% and the deoxynucleoside for 13%, indicating substantial oxidation of RNA in humans. In rat urine, excretion of the oxidised base was more dominant, the percentages of the oxidised base, ribonucleoside and deoxynucleosides being 89, 8 and 3%. This finding is at odds with previous reports using immunoaffinity pre-purification and HPLC-electrochemical detection analysis. The developed method now makes it possible to measure oxidative nucleic acid stress to both RNA and DNA in epidemiological and intervention settings, and our findings indicate a substantial RNA oxidation in addition to DNA oxidation. The small volume needed also makes the method applicable to small experimental animals.
Aims: Urinary 8-oxo-7,8-dihydro-2¢-deoxyguanosine (8-oxodG) is a widely used biomarker of oxidative stress. However, variability between chromatographic and ELISA methods hampers interpretation of data, and this variability may increase should urine composition differ between individuals, leading to assay interference. Furthermore, optimal urine sampling conditions are not well defined. We performed inter-laboratory comparisons of 8-oxodG measurement between mass spectrometric-, electrochemical-and ELISA-based methods, using common within-technique calibrants to analyze 8-oxodG-spiked phosphate-buffered saline and urine samples. We also investigated human subject-and sample collection-related variables, as potential sources of variability. Results: Chromatographic assays showed high agreement across urines from different subjects, whereas ELISAs Kronos Science, Phoenix, Arizona.
ANTIOXIDANTS & REDOX SIGNALINGVolume 18, Number 18, 2013 ª Mary Ann Liebert, Inc. DOI: 10.1089/ars.2012.4714
2377showed far more inter-laboratory variation and generally overestimated levels, compared to the chromatographic assays. Excretion rates in timed 'spot' samples showed strong correlations with 24 h excretion (the 'gold' standard) of urinary 8-oxodG (r p 0.67-0.90), although the associations were weaker for 8-oxodG adjusted for creatinine or specific gravity (SG). The within-individual excretion of 8-oxodG varied only moderately between days (CV 17% for 24 h excretion and 20% for first void, creatinine-corrected samples). Innovation: This is the first comprehensive study of both human and methodological factors influencing 8-oxodG measurement, providing key information for future studies with this important biomarker. Conclusion: ELISA variability is greater than chromatographic assay variability, and cannot determine absolute levels of 8-oxodG. Use of standardized calibrants greatly improves intra-technique agreement and, for the chromatographic assays, importantly allows integration of results for pooled analyses. If 24 h samples are not feasible, creatinine-or SG-adjusted first morning samples are recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.