LOFAR, the LOw-Frequency ARray, is a new-generation radio interferometer constructed in the north of the Netherlands and across europe. Utilizing a novel phased-array design, LOFAR covers the largely unexplored low-frequency range from 10-240 MHz and provides a number of unique observing capabilities. Spreading out from a core located near the village of Exloo in the northeast of the Netherlands, a total of 40 LOFAR stations are nearing completion. A further five stations have been deployed throughout Germany, and one station has been built in each of France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR achieves unparalleled sensitivity and angular resolution in the low-frequency radio regime. The LOFAR facilities are jointly operated by the International LOFAR Telescope (ILT) foundation, as an observatory open to the global astronomical community. LOFAR is one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. LOFAR's new capabilities, techniques and modus operandi make it an important pathfinder for the Square Kilometre Array (SKA). We give an overview of the LOFAR instrument, its major hardware and software components, and the core science objectives that have driven its design. In addition, we present a selection of new results from the commissioning phase of this new radio observatory.
Abstract-Iterative constant modulus algorithms such as Godard and CMA have been used to blindly separate a superposition of co-channel constant modulus (CM) signals impinging on an antenna array. These algorithms have certain deficiencies in the context of convergence to local minima and the retrieval of all individual CM signals that are present in the channel. In this paper, we show that the underlying constant modulus factorization problem is, in fact, a generalized eigenvalue problem, and may be solved via a simultaneous diagonalization of a set of matrices. With this new, analytical approach, it is possible to detect the number of CM signals present in the channel, and to retrieve all of them exactly, rejecting other, non-CM signals. Only a modest amount of samples are required. The algorithm is robust in the presence of noise, and is tested on measured data, collected from an experimental set-up.
Abstract-In multiple-input multiple-output (MIMO) systems, the use of many radio frequency (RF) and analog-to-digital converter (ADC) chains at the receiver is costly. Analog beamformers operating in the RF domain can reduce the number of antenna signals to a feasible number of baseband channels. Subsequently, digital beamforming is used to capture the desired user signal. In this paper, we consider the design of the analog and digital beamforming coefficients, for the case of narrowband signals. We aim to cancel interfering signals in the analog domain, thus minimizing the required ADC resolution. For a given resolution, we will propose the optimal analog beamformer to minimize the mean squared error between the desired user and its receiver estimate. Practical analog beamformers employ only a quantized number of phase shifts. For this case, we propose a design technique to successively approximate the desired overall beamformer by a linear combination of implementable analog beamformers. Finally, an online channel estimation technique is introduced to estimate the required statistics of the wireless channel on which the optimal beamformers are based.Index Terms-ADC power consumption, analog beamforming, matching pursuit, passive RF phase shifters.
Abstract-High-resolution parameter estimation techniques have recently been applied to jointly estimate multiple signal parameters. In this work, we consider the problem of determining the directions and center frequencies of a number of narrowband sources in a band of interest. We present a joint angle-frequency estimation method, based on the multidimensional ESPRIT algorithm. A perturbation error analysis gives bounds on the parameter estimates and provides optimal values for the temporal and spatial smoothing parameters. The analysis is shown to be consistent with simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.