Antimicrobial resistance is an important One Health challenge that encompasses the human, animal, and environmental fields. A total of 111 Escherichia coli isolates previously recovered from manure (n = 57) and indoor air (n = 54) samples from a broiler farm were analyzed to determine their phenotypes and genotypes of antimicrobial resistance and integron characterization; in addition, plasmid replicon analysis and molecular typing were performed in extended-spectrum-beta-lactamase (ESBL) producer isolates. A multidrug-resistance phenotype was detected in 46.8% of the isolates, and the highest rates of resistance were found for ampicillin, trimethoprim–sulfamethoxazole, and tetracycline (>40%); moreover, 15 isolates (13.5%) showed susceptibility to all tested antibiotics. None of the isolates showed imipenem and/or cefoxitin resistance. Twenty-three of the one hundred and eleven E. coli isolates (20.7%) were ESBL producers and carried the blaSHV-12 gene; one of these isolates was recovered from the air, and the remaining 22 were from manure samples. Most of ESBL-positive isolates carried the cmlA (n = 23), tet(A) (n = 19), and aac(6′)-Ib-cr (n = 11) genes. The following genetic lineages were identified among the ESBL-producing isolates (sequence type-phylogroup-clonotype): ST770-E-CH116–552 (n = 12), ST117-B2-CH45–97 (n = 4), ST68-E-CH26–382/49 (n = 3), ST68-E-CH26–49 (n = 1), and ST10992-A/B1-CH11–23/41/580 (n = 4); the latter two were detected for the first time in the poultry sector. At least two plasmid replicon types were detected in the ESBL-producing E. coli isolates, with IncF, IncF1B, IncK, and IncHI1 being the most frequently found. The following antimicrobial resistance genes were identified among the non-ESBL-producing isolates (number of isolates): blaTEM (58), aac(6′)-Ib-cr (6), qnrS (2), aac(3)-II (2), cmlA (6), tet(A)/tet(B) (22), and sul1/2/3 (51). Four different gene-cassette arrays were detected in the variable region of class 1 (dfrA1-aadA1, dfrA12-aadA2, and dfrA12-orf-aadA2-cmlA) and class 2 integrons (sat2-aadA1-orfX). This work reveals the worrying presence of antimicrobial-resistant E. coli in the broiler farm environment, with ESBL-producing isolates of SHV-12 type being extensively disseminated.
The molecular ecology of Staphylococcus aureus, Staphylococcus pseudintermedius and their methicillin‐resistant strains in healthy dogs and cats could serve as good models to understand the concept of bacterial zoonosis due to animal companionship. This study aims to provide insights into pooled prevalence, genetic lineages, virulence and antimicrobial resistance (AMR) among healthy dogs and cats. Original research and brief communication articles published from 2001 to 2021 that reported the nasal detection of S. aureus and S. pseudintermedius in healthy dogs and cats in the community, homes and outside veterinary clinics were examined and analysed. Forty‐nine studies were eligible and included in this systematic review. The pooled prevalence of nasal carriage of S. aureus/methicillin‐resistant S. aureus (MRSA) in healthy dogs and cats were 10.9% (95% CI: 10.1–11.9)/2.8% (95% CI: 2.4–3.2) and 3.2% (95% CI: 1.9–4.8)/0.5% (95% CI: 0.0–1.1), respectively. Conversely, the pooled prevalence of S. pseudintermedius/methicillin‐resistant S. pseudintermedius (MRSP) in healthy dogs and cats were 18.3% (95% CI: 17.1–19.7)/3.1% (95% CI: 2.5–3.7) and 1.3% (95% CI: 0.6–2.4)/1.2% (95% CI: 0.6–2.3), respectively. Although highly diverse genetic lineages of S. aureus were detected in healthy dogs and cats, MSSA‐CC1/CC5/CC22/CC45/CC121/CC398 and MRSA‐CC5/CC93/CC22/CC30 were mostly reported in dogs; and MSSA‐CC5/CC8/CC15/CC48 and MRSA‐CC22/CC30/CC80 in cats. Of note, MSSA‐CC398 isolates (spa‐types t034 and t5883) were detected in dogs. Genetic lineages often associated with MSSP/MRSP were ST20/ST71, highlighting the frequent detection of the epidemic European MRSP‐ST71 clone in dogs. S. aureus isolates carrying the luk‐S/F‐PV, tst, eta, etb and etd genes were seldomly detected in dogs, and luk‐S/F‐PV was the unique virulence factor reported in isolates of cats. S. pseudintermedius isolates harbouring the luk‐S/F‐I, seint and expA genes were frequently found, especially in dogs. High and diverse rates of AMR were noted, especially among MRSA/MRSP isolates. There is a need for additional studies on the molecular characterization of isolates from countries with under‐studied nasal staphylococci isolates.
Tetracycline resistance (TetR) has been evidenced as a good phenotypic marker for detection of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) isolates of the clonal complex CC398. The aim of this study was to characterise a collection of 95 TetR-MRSA isolates, not belonging to the lineage CC398, that were obtained in a previous multicentre study, to detect other MRSA clonal complexes that could be associated with this phenotypic TetR marker. The TetR-MRSA isolates were recovered from 20 Spanish hospitals during 2016 and they were characterised to determine their antimicrobial resistance and virulence phenotypes/genotypes as well as the presence of the immune evasion cluster (IEC). A high proportion of isolates belonging to the CC1 lineage (46%) were observed, as well as to the CC5, CC8 and CC45 lineages (11% each one). Thirty-two different spa-types were identified, being predominantly CC1-t127 (40%) and CC45-t1081 (11%). The IEC system (with the gene scn as marker) was present in 73% of isolates and 16% produced the Panton Valentine leucocidin (PVL). A high proportion of MRSA-CC1 isolates were scn-negative (38.6%) and 52.9% of them were blaZ-negative. A multidrug resistance (MDR) phenotype was identified in 86% of MRSA isolates. The knowledge of other TetR-MRSA genetic lineages, in addition to CC398, is highly relevant, since most of them were MDR and some of them presented important virulence factors. Strains potentially associated with livestock (as the subpopulation CC1-t127-scn-negative) or with humans (as the CC45 lineage or the subpopulation CC1-scn-positive) have been found in this study. The use of tetracycline-resistance for detection, not only of CC398 but also of other LA-MRSA lineages should be tracked in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.