Pavement cracking is a significant symptom of pavement deterioration and deficiency. Conventional manual inspections of road condition are gradually replaced by novel automated inspection systems. As a result, a great amount of pavement surface information is digitized by these systems with a high resolution. With pavement surface data, pavement cracks can be detected using crack detection algorithms. In this paper, a fully automated algorithm for segmenting and enhancing pavement crack is proposed, which consists of four major procedures. First, a preprocessing procedure is employed to remove spurious noise and rectify the original 3D pavement data. Second, crack saliency maps are segmented from 3D pavement data using steerable matched filter bank. Third, 2D tensor voting is applied to crack saliency maps to achieve better curve continuity of crack structure and higher accuracy. Finally, postprocessing procedures are used to remove redundant noises. The proposed procedures were evaluated over 200 asphalt pavement images with diverse cracks. The experimental results demonstrated that the proposed method showed a high performance and could achieve average precision of 88.38%, recall of 93.15%, and F-measure of 90.68%, respectively. Accordingly, the proposed approach can be helpful in automated pavement condition assessment.
Simultaneous pixel-level detection of multiple distresses and surface design features on complex asphalt pavements is a critical challenge in intelligent pavement survey. This paper proposes a deep-learning model named ShuttleNet to provide an efficient solution for this challenge by implementing robust semantic segmentation on asphalt pavements. The proposed ShuttleNet aims at repeating the encoding-decoding round freely or even endlessly such that the contexts at different resolution levels can be learned and integrated many times for enhanced latent representations. Additionally, a new and efficient connection method called memory connection is also proposed in the paper and deployed in the ShuttleNet model to provide shortcut connections between successive encoding-decoding rounds. The proposed memory connection can partially or entirely carry the decoded information at different resolution levels into the next encoding-decoding round. Pairing 3D pavement images with 2D pavement images, the proposed ShuttleNet model is applied to detect multiple distresses and surface design features on asphalt pavements simultaneously, including pavement cracks, potholes, sealed cracks, patches, markings, expansion joints, and the pavement background. Experimental results demonstrate that the mean F-measure and mean intersection-over-union attained by the recommended architectural variation of the proposed ShuttleNet model on 1500 testing image pairs are 92.54% and 0.8657 respectively. According to the performance comparisons using both private and public datasets, the proposed ShuttleNet model can yield a noticeably higher detection accuracy, compared with four state-of-the-art models for semantic segmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.