Deep learning is a machine learning technique that attempts to model high-level abstractions in data by utilizing a graph composed of multiple processing layers that experience various linear and non-linear transformations. This technique has been shown to perform well for applications in drug discovery, utilizing structural features of small molecules to predict activity. However, the application of deep learning to discriminating features of kinase inhibitors has not been well explored. Small molecule kinase inhibitors are an important class of anti-cancer agents and have demonstrated impressive clinical efficacy in several different diseases. However, resistance is often observed mediated by adaptive Kinome reprogramming or subpopulation diversity.Therefore, polypharmacology and combination therapies offer potential therapeutic strategies for patients with resistant disease. Their development would benefit from more comprehensive and dense knowledge of small-molecule inhibition across the human Kinome. Because such data is not publicly available, we evaluated multiple machine learning methods to predict small molecule inhibition of 342 kinases using over 650K aggregated bioactivity annotations for over 300K small molecules curated from ChEMBL and the Kinase Knowledge Base (KKB). Our results demonstrated that multi-task deep neural networks outperform classical single-task methods, offering potential towards predicting activity profiles and filling gaps in the available data. ANCILLARY INFORMATIONSupporting Information. Author ContributionsBKA. developed code, performed computational modeling and data analysis; data curation and data integration; BKA and SCS performed data curation and integration; SCS devised the project; SCS and NA advised the project; BKA and SCS wrote the manuscript.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.