The expression of matrix metalloproteinase-2 (MMP-2) has been linked with tumor invasion, angiogenesis, and metastasis. However, the molecular basis for MMP-2 overexpression in tumor cells remains unclear. In this study, by using K-1735 melanoma system, we demonstrated that highly metastatic C4, M2, and X21 tumor cells express elevated MMP-2 mRNA and enzymatic activity, whereas poorly metastatic C10, C19, and C23 tumor cells express much lower levels. Moreover, a concomitant elevated Stat3 activity has been detected in these metastatic tumor cells that overexpress MMP-2. Transfection of constitutively activated Stat3 into poorly metastatic C23 tumor cells directly activated the MMP-2 promoter, whereas the expression of a dominant-negative Stat3 in highly metastatic C4 tumor cells inhibited the MMP-2 promoter. A high-affinity Stat3-binding element was identified in the MMP-2 promoter and Stat3 protein bound directly to the MMP-2 promoter. Blockade of activated Stat3 through expression of a dominant-negative Stat3 significantly suppressed MMP-2 expression in the metastatic tumor cells. Therefore, overexpression of MMP-2 in the metastatic melanoma cells can be attributed to elevated Stat3 activity, and Stat3 upregulates the transcription of MMP-2 through direct interaction with the MMP-2 promoter. Furthermore, blockade of activated Stat3 in highly metastatic C4 cells significantly suppressed the invasiveness of the tumor cells, inhibited tumor growth, and prevented metastasis in nude mice. Collectively, these studies suggest that Stat3 signaling directly regulates MMP-2 expression, tumor invasion, and metastasis, and that Stat3 activation might be a crucial event in the development of metastasis.
Multiple mechanisms of resistance contribute to the inevitable progression of hormone-sensitive prostate cancer to castration-resistant prostate cancer (CRPC). Currently approved therapies for CRPC include systemic chemotherapy (docetaxel and cabazitaxel) and agents targeting the resistance pathways leading to CRPC, including enzalutamide and abiraterone. While there is significant survival benefit, primary and secondary resistance to these therapies develops rapidly. Up to one-third of patients have primary resistance to enzalutamide and abiraterone; the remaining patients eventually progress on treatment. Understanding the mechanisms of resistance resulting in progression as well as identifying new targetable pathways remains the focus of current prostate cancer research. We review current knowledge of mechanisms of resistance to the currently approved treatments, development of adjunctive therapies, and identification of new pathways being targeted for therapeutic purposes.
Purpose
Enzalutamide, a second-generation antiandrogen, was recently approved for the treatment of castration-resistant prostate cancer (CRPC) in patients who no longer respond to docetaxel. Despite these advances that provide temporary respite, resistance to enzalutamide occurs frequently. AR splice variants such as AR-V7 have recently been shown to drive castration resistant growth and resistance to enzalutamide. This study was designed to identify inhibitors of AR variants and test its ability to overcome resistance to enzalutamide.
Experimental Design
The drug screening was conducted using luciferase activity assay to determine the activity of AR-V7 after treatment with the compounds in the Prestwick Chemical Library, which contains about 1120 FDA-approved drugs. The effects of the identified inhibitors on AR-V7 activity and enzalutamide sensitivity were characterized in CRPC and enzalutamide-resistant prostate cancer cells in vitro and in vivo.
Results
Niclosamide, an FDA-approved anti-helminthic drug, was identified as a potent AR-V7 inhibitor in prostate cancer cells. Niclosamide significantly downregulated AR-V7 protein expression by protein degradation through a proteasome dependent pathway. Niclosamide also inhibited AR-V7 transcription activity and reduced the recruitment of AR-V7 to the PSA promoter. Niclosamide inhibited prostate cancer cell growth in vitro and tumor growth in vivo. Furthermore, the combination of niclosamide and enzalutamide resulted in significantly inhibition of enzalutamide-resistant tumor growth, suggesting that Niclosamide enhances enzalutamide therapy and overcomes enzalutamide resistance in castration resistant prostate cancer cells.
Conclusions
Niclosamide was identified as a novel inhibitor of AR variants. Our findings offer preclinical validation of niclosamide as a promising inhibitor of androgen receptor variants to treat, either alone or in combination with current antiandrogen therapies, advanced prostate cancer patients, especially those resistant to enzalutamide.
Our study shows that, in the majority of patients, a ctDNA assay is sufficient to identify all driver DNA alterations present in matched metastatic tissue and supports development of DNA biomarkers to guide mCRPC patient management based on ctDNA alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.