The autophagy–lysosome pathway and apoptosis constitute vital determinants of cell fate and engage in a complex interplay in both physiological and pathological conditions. Central to this interplay is the archetypal autophagic cargo adaptor p62/SQSTM1/Sequestosome-1 which mediates both cell survival and endoplasmic reticulum stress-induced apoptosis via aggregation of ubiquitinated caspase-8. Here, we investigated the role of p62-mediated apoptosis in head and neck squamous cell carcinoma (HNSCC), which can be divided into two groups based on human papillomavirus (HPV) infection status. We show that increased autophagic flux and defective apoptosis are associated with radioresistance in HPV(-) HNSCC, whereas HPV(+) HNSCC fail to induce autophagic flux and readily undergo apoptotic cell death upon radiation treatments. The degree of radioresistance and tumor progression of HPV(-) HNSCC respectively correlated with autophagic activity and cytosolic levels of p62. Pharmacological activation of the p62-ZZ domain using small molecule ligands sensitized radioresistant HPV(-) HNSCC cells to ionizing radiation by facilitating p62 self-polymerization and sequestration of cargoes leading to apoptosis. The self-polymerizing activity of p62 was identified as the essential mechanism by which ubiquitinated caspase-8 is sequestered into aggresome-like structures, without which irradiation fails to induce apoptosis in HNSCC. Our results suggest that harnessing p62-dependent sequestration of ubiquitinated caspase-8 provides a novel therapeutic avenue in patients with radioresistant tumors.
Inflammatory bowel disease (IBD), which includes both Crohn disease and ulcerative colitis, is a relapsing inflammatory disease of the gastrointestinal tract. Long-term chronic inflammatory conditions elevate the patient's risk of colorectal cancer (CRC). Currently, diagnosis requires endoscopy with biopsy. This procedure is invasive and requires a bowel-preparatory regimen, adding to patient burden. Interleukin 12 (IL12) and interleukin 23 (IL23) play key roles in inflammation, especially in the pathogenesis of IBD, and are established therapeutic targets. We propose that imaging of IL12/23 and its p40 subunit in IBD via immuno-PET potentially provides a new noninvasive diagnostic approach. Methods: Our aim was to investigate the potential of immuno-PET to image inflammation in a chemically induced mouse model of colitis using dextran sodium sulfate by targeting IL12/23p40 with a 89 Zr-radiolabeled anti-IL12/23p40 antibody. Results: High uptake of the IL12/23p40 immuno-PET agent was exhibited by dextran sodium sulfate-administered mice, and this uptake correlated with increased IL12/23p40 present in the sera. Competitive binding studies confirmed the specificity of the radiotracer for IL12/23p40 in the gastrointestinal tract. Conclusion: These promising results demonstrate the utility of this radiotracer as an imaging biomarker of IBD. Moreover, IL12/23p40 immuno-PET can potentially guide treatment decisions for IBD management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.