In a prospective cross-sectional study, we used computerized volumetry of magnetic resonance images to examine the patterns of brain aging in 148 healthy volunteers. The most substantial age-related decline was found in the volume of the prefrontal gray matter. Smaller age-related differences were observed in the volume of the fusiform, inferior temporal and superior parietal cortices. The effects of age on the hippocampal formation, the postcentral gyrus, prefrontal white matter and superior parietal white matter were even weaker. No significant age-related differences were observed in the parahippocampal and anterior cingulate gyri, inferior parietal lobule, pericalcarine gray matter, the precentral gray and white matter, postcentral white matter and inferior parietal white matter. The volume of the total brain volume and the hippocampal formation was larger in men than in women even after adjustment for height. Inferior temporal cortex showed steeper aging trend in men. Small but consistent rightward asymmetry was found in the whole cerebral hemispheres, superior parietal, fusiform and orbito-frontal cortices, postcentral and prefrontal white matter. The left side was larger than the right in the dorsolateral prefrontal, parahippocampal, inferior parietal and pericalcarine cortices, and in the parietal white matter. However, there were no significant differences in age trends between the hemispheres.
These results indicate that in both healthy subjects and patients with schizophrenia hippocampal volume is plastic in response to aerobic exercise.
We examined the pattern of neuroanatomic abnormalities in adults with Down's syndrome (DS) and the cognitive correlates of these abnormalities. Specifically, we compared this pattern with what would be predicted by the hypotheses attributing DS pathology to either premature aging or Alzheimer's disease. We measured a number of brain regions on MRIs of 25 subjects: 13 persons with the DS phenotype and 12 age- and sex-matched healthy volunteers. Study participants had no history of cardiovascular disease, diabetes, thyroid dysfunction, or seizure disorder. After statistical adjustment for differences in body size, we found that, in comparison with controls, DS subjects had substantially smaller cerebral and cerebellar hemispheres, ventral pons, mammillary bodies, and hippocampal formations. In the cerebellar vermis of DS subjects, we observed smaller lobules VI to VIII without appreciable differences in other regions. In addition, we noted trends for shrinkage of the dorsolateral prefrontal cortex, anterior cingulate gyrus, inferior temporal and parietal cortices, parietal white matter, and pericalcarine cortex in DS subjects compared with normal controls. The parahippocampal gyrus was larger in DS subjects. We found no significant group differences in the volumes of the prefrontal white matter, the orbitofrontal cortex, the pre- and postcentral gyri, or the basal ganglia. We conclude that the pattern of selective cerebral damage in DS does not clearly fit the predictions of the premature aging or Alzheimer's disease hypotheses. To examine the relationship between brain abnormalities and cognitive deficits observed in DS, we correlated the size of brain regions that were significantly reduced in DS with performance on tests of intelligence and language. The correlation analysis suggested age-related decline in the DS subjects in general intelligence and basic linguistic skills. General intelligence and mastery of linguistic concepts correlated negatively with the volume of the parahippocampal gyrus. There was no relationship between total brain size and the cognitive variables.
To assess the nature and magnitude of memory impairment in multiple sclerosis (MS), the authors analyzed quantitatively 36 studies comparing the memory performance of MS participants to healthy controls. The authors studied (a) the pattern of impairment across short-term memory (STM), working memory (WM), and long-term memory (LTM); (b) the moderating influence of retrieval support on LTM impairment; (c) the covariation of WM and LTM impairment; and (d) the moderating influence of clinical characteristics of the MS sample on memory impairment. The analyses revealed significant impairment across all memory domains and failed to support a retrieval-based account of LTM dysfunction in MS patients. In addition, robust associations were found between clinical features of MS and memory impairment. The findings suggest a more global pattern of memory deficits in MS than has been previously believed, with deficits clearly associated with neurological disability and disease course.
In this short-term study, the addition of risperidone to clozapine did not improve symptoms in patients with severe schizophrenia. (ClinicalTrials.gov number, NCT00272584).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.