A BS TRACT: Background: Sleep dysfunction is common and disabling in persons with Parkinson's Disease (PD). Exercise improves motor symptoms and subjective sleep quality in PD, but there are no published studies evaluating the impact of exercise on objective sleep outcomes. The goal of this study was to to determine if high-intensity exercise rehabilitation combining resistance training and bodyweight interval training, compared with a sleep hygiene control improved objective sleep outcomes in PD. Methods: Persons with PD (Hoehn & Yahr stages 2-3; aged ≥45 years, not in a regular exercise program) were randomized to exercise (supervised 3 times a week for 16 weeks; n = 27) or a sleep hygiene, no-exercise control (in-person discussion and monthly phone calls; n = 28). Participants underwent polysomnography at baseline and post-intervention. Change in sleep efficiency was the primary outcome, measured from baseline to postintervention. Intervention effects were evaluated with general linear models with measurement of group × time interaction. As secondary outcomes, we evaluated changes in other aspects of sleep architecture and compared the effects of acute and chronic training on objective sleep outcomes. Results: The exercise group showed significant improvement in sleep efficiency compared with the sleep hygiene group (group × time interaction: F = 16.0, P < 0.001, d = 1.08). Other parameters of sleep architecture also improved in exercise compared with sleep hygiene, including total sleep time, wake after sleep onset, and slow-wave sleep. Chronic but not acute exercise improved sleep efficiency compared with baseline. Conclusions: High-intensity exercise rehabilitation improves objective sleep outcomes in PD. Exercise is an effective nonpharmacological intervention to improve this disabling nonmotor symptom in PD.
Background Sleep dysfunction is a common and disabling non-motor symptom in Parkinson’s disease. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor symptoms and subjective sleep in PD, but alternative stimulation parameters to optimize sleep have not been explored. We hypothesized that low frequency STN DBS would improve objective sleep more than conventional settings. Methods Twenty PD subjects with STN DBS (18 unilateral, 2 bilateral) underwent 3 non-consecutive nights of polysomnography: DBS off; DBS high frequency (≥130 Hz); and DBS low frequency (60 Hz). Motor symptom tolerability was assessed 30 minutes after resumption of baseline settings the morning following polysomnography. The primary outcome was change in sleep efficiency between high and low frequency nights measured with repeated measures ANOVA. Results There was no difference in sleep efficiency between nights at high frequency (82.1% (72.6–90.1)) (median (IQR)), low frequency (81.2% (56.2–88.8)), or DBS off (82.8% (75.7–87.4)), p=0.241. Additionally, there was no difference in sleep stage percent, arousals, limb movements, subjective sleep quality, or objective vigilance measures. These outcomes did not change after adjusting for age, sex, disease duration, or side of surgery. No residual adverse motor effects were noted. Conclusions Although well tolerated, low frequency STN DBS did not improve objective sleep in PD. Remarkably, objective measures of sleep were not worse with DBS off. These observations point to the potential for adaptive stimulation approaches, through which DBS settings could be optimized during sleep to meet individual needs. Additionally, these changes could preserve battery life without compromising patient outcomes.
Background: Cognitive and sleep dysfunction are common non-motor symptoms in Parkinson’s disease (PD). Objective: Determine the relationship between slow wave sleep (SWS) and cognitive performance in PD. Methods: Thirty-two PD participants were evaluated with polysomnography and a comprehensive level II neurocognitive battery, as defined by the Movement Disorders Society Task Force for diagnosis of PD-mild cognitive impairment. Raw scores for each test were transformed into z-scores using normative data. Z-scores were averaged to obtain domain scores, and domain scores were averaged to determine the Composite Cognitive Score (CCS), the primary outcome. Participants were grouped by percent of SWS into High SWS and Low SWS groups and compared on CCS and other outcomes using 2-sided t-tests or Mann-Whitney U. Correlations of cognitive outcomes with sleep architecture and EEG spectral power were performed. Results: Participants in the High SWS group demonstrated better global cognitive function (CCS) (p = 0.01, effect size: r = 0.45). In exploratory analyses, the High SWS group showed better performance in domains of executive function (effect size: Cohen’s d = 1.05), language (d = 0.95), and processing speed (d = 1.12). Percentage of SWS was correlated with global cognition and executive function, language, and processing speed. Frontal EEG delta power during N3 was correlated with the CCS and executive function. Cognition was not correlated with subjective sleep quality. Conclusion: Increased SWS and higher delta spectral power are associated with better cognitive performance in PD. This demonstrates the significant relationship between sleep and cognitive function and suggests that interventions to improve sleep might improve cognition in individuals with PD.
Background Depression is common in Parkinson’s disease (PD) and adversely affects quality of life. Both unilateral and bilateral subthalamic (STN) deep brain stimulation (DBS) effectively treat the motor symptoms of PD, but questions remain regarding the impact of unilateral STN DBS on non-motor symptoms, such as depression. Methods We report changes in depression, as measured by the Hamilton Depression Rating Scale (HAMD-17), in 50 consecutive PD patients who underwent unilateral STN DBS. Participants were also evaluated with UPDRS part III, Parkinson’s Disease Questionnaire-39, and Pittsburgh Sleep Quality Index. The primary outcome was change in HAMD-17 at 6 months versus pre-operative baseline, using repeated measures analysis of variance (ANOVA). Secondary outcomes included the change in HAMD-17 at 3, 12, 18, and 24 months post-operatively and correlations amongst outcome variables using Pearson correlation coefficients. As a control, we also evaluated changes in HAMD-17 in 25 advanced PD patients who did not undergo DBS. Results Participants with unilateral STN DBS experienced significant improvement in depression 6 months post-operatively (4.94±4.02) compared to preoperative baseline (7.90±4.44) (mean±SD) (p=<0.0001). HAMD-17 scores did not correlate with UPDRS part III at any time-point. Interestingly, the HAMD-17 was significantly correlated with sleep quality and quality of life at baseline, 3 months, and 6 months post-operatively. Participants without DBS experienced no significant change in HAMD-17 over the same interval. Conclusion Unilateral STN DBS improves depression 6 months post-operatively in patients with PD. Improvement in depression is maintained over time and correlates with improvement in sleep quality and quality of life.
Background: Sleep disorders are common in Parkinson’s disease (PD) and include alterations in sleep-related EEG oscillations. Objective: This case-control study tested the hypothesis that patients with PD would have a lower density of Scalp-Slow Wave (SW) oscillations and higher slow-to-fast frequencies ratio in rapid eye movement (REM) sleep than non-PD controls. Other sleep-related quantitative EEG (qEEG) features were also examined, including SW morphology, sleep spindles, and Scalp-SW spindle phase-amplitude coupling. Methods: Polysomnography (PSG)-derived sleep EEG was compared between PD participants (n = 56) and non-PD controls (n = 30). Following artifact rejection, sleep qEEG analysis was performed in frontal and central leads. Measures included SW density and morphological features of SW and sleep spindles, SW-spindle phase-amplitude coupling, and spectral power analysis in Non-REM (NREM) and REM. Differences in qEEG features between PD and non-PD controls were compared using two-tailed Welch’s t-tests, and correction for multiple comparisons was performed per the Benjamini-Hochberg method. Results: SW density was lower in PD than in non-PD controls (F = 13.5, p’ = 0.003). The PD group also exhibited higher ratio of slow REM EEG frequencies (F = 4.23, p’ = 0.013), higher slow spindle peak frequency (F = 24.7, p’ < 0.002), and greater SW-spindle coupling angle distribution non-uniformity (strength) (F = 7.30, p’ = 0.034). Conclusion: This study comprehensively evaluates sleep qEEG including SW-spindle phase amplitude coupling in PD compared to non-PD controls. These findings provide novel insights into how neurodegenerative disease disrupts electrophysiological sleep rhythms. Considering the role of sleep oscillatory activity on neural plasticity, future studies should investigate the influence of these qEEG markers on cognition in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.