Psoriasis is most probably an inherited disease characterized by cell proliferation, angiogenesis, and an inflammatory process. The pathophysiology remains unknown, although an alteration in cell-cell and cell-matrix adhesion versus an autoimmune process has been proposed as the primary defect. Here, we show evidence of a new mechanism involving basement membrane alterations accompanied by keratinocyte overexpression of matrix metalloproteinase (MMP) 2 and tissue inhibitor of MMP-2 (TIMP-2) in both uninvolved and involved psoriatic skin. Immunocytochemistry with antibodies against collagen IV (alpha1, alpha2 chains) and laminins (alpha2, alpha5, beta1, gamma1 chains) revealed gaps, folding, and reduplication of the epidermo-dermal basement membrane. There was overexpression of MMP-2 in the cytoplasm of suprabasal keratinocytes. Gelatin zymography revealed pro-MMP-2 and its activated form, a-MMP-2, in both uninvolved and involved psoriatic skin, whereas pro-MMP-9 was only present in involved skin. TIMP-2 was expressed at the cell surface of psoriatic involved suprabasal keratinocytes whereas it was restricted to basal keratinocytes in uninvolved areas. Western blots showed a marked increase in a-MMP-2 and TIMP-2 in uninvolved and involved psoriatic skin although it was more pronounced in the latter. MT1-MP, known to activate pro-MMP-2, was increased in involved areas. In situ hybridization revealed strong signals of MMP-2 mRNA in both uninvolved and involved psoriatic epidermis. The overexpression of MMP-2 in uninvolved and involved psoriatic epidermis supports the concept that the primary alteration may reside in the keratinocyte. In addition, the presence of the activated form of MMP-2 could be responsible for cell-cell and cell-matrix changes noted in psoriatic epidermis.
Psoriasis is a chronic inflammatory skin disease in which epidermal proliferation is closely associated with excessive microvascular expansion within the papillary dermis. Angiopoietins have recently been identified as the major ligands of the endothelial- specific receptor Tie2. Angiopoietin 1 induces Tie2 signaling as a receptor activator and maintains blood vessel formation, whereas angiopoietin 2 destabilizes vessels by blocking Tie2 signaling as an antagonist of angiopoietin 1 and acts with vascular endothelial growth factor to initiate angiogenesis. In this study we examined the potential role of angiopoietins and the Tie2 receptor in vascular changes of psoriasis. Angiopoietin 1, angiopoietin 2, and Tie2 were upregulated in involved psoriasis skin compared to uninvolved psoriasis skin, healthy skin, and chronic spongiotic dermatitis skin. Angiopoietin 1 was expressed by stromal cells in the highly vascularized papillary dermis of involved psoriasis skin. Angiopoietin 2 was expressed by endothelial cells in the vicinity of the proliferating epidermis that abundantly expressed vascular endothelial growth factor. Vascular endothelial growth factor and basic fibroblast growth factor, which were overexpressed in involved psoriasis skin, enhanced angiopoietin 2 and Tie2 expression in dermal microvascular endothelial cell cultures. Thus, our findings suggest that upregulation of angiopoietin 1, angiopoietin 2, and Tie2 is closely associated with the development of microvascular proliferation in psoriasis, and that the angiopoietin-Tie2 system may act coordinately with vascular endothelial growth factor and basic fibroblast growth factor to promote neovascularization in psoriasis. Moreover, successful antipsoriatic treatment was accompanied by noticeable reduction of angiopoietin 2 expression, suggesting that alteration of angiopoietin 2 expression may be particularly important in controlling vascular proliferation in the treatment of psoriasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.