Throughout sub-Saharan Africa, maize streak virus strain A (MSV-A), the causal agent of maize streak disease (MSD), is an important biological constraint on maize production. In November/December 2010, an MSD survey was carried out in the forest and transition zones of Ghana in order to obtain MSV-A virulence sources for the development of MSD-resistant maize genotypes with agronomic properties suitable for these regions. In 79 well-distributed maize fields, the mean MSD incidence was 18.544 % and the symptom severity score was 2.956 (1 = no symptoms and 5 = extremely severe). We detected no correlation between these two variables. Phylogenetic analysis of cloned MSV-A isolates that were fully sequenced from samples collected in 51 of these fields, together with those sampled from various other parts of Africa, indicated that all of the Ghanaian isolates occurred within a broader cluster of West African isolates, all belonging to the highly virulent MSV-A1 subtype. Besides being the first report of a systematic MSV survey in Ghana, this study is the first to characterize the full-genome sequences of Ghanaian MSV isolates. The 51 genome sequences determined here will additionally be a valuable resource for the rational selection of representative MSV-A variant panels for MSD resistance screening.
Rice yellow mottle virus (RYMV) is the most damaging viral disease of rice in Africa and can cause yield losses of up to 100%. The objective of this study was to characterize newly introduced rice lines from Korea into Ghana for their reaction to RYMV infection. One hundred and seventy-two rice lines from Korea were screened for their level of resistance RYMV in a screen house at Fumesua, Ghana. Four checks consisting of two highly resistant lines (Tog7291 and Gigante with
rymv1-2
(resistant gene1-allele2) and
rymv2
(resistant gene2) respectively), a moderately resistant line (CRI-Amankwatia) and a susceptible cultivar Jasmine 85 were used. The experiment was carried out in a 4 x 44 lattice design with four replicates. Screening for RYMV resistance was conducted by visual symptom scoring and virus-assessment through serology using enzyme linked immunosorbent assay (ELISA) test. Disease incidence and severity were assessed from 2 to 42 dpi. Data for disease severity and incidence were transformed (Log x+1) for ANOVA.
Five lines (8261112, 8261119, 8261133, 8261588, and 8261634) were identified to be highly resistant to the disease just like Tog7291 and Gigante. The study also revealed 24 lines that were resistant but not grouping with Tog7291 and Gigante, whereas 100 moderately resistant lines clustered with the moderately resistance check CRI-Amankwatia in a distinct group. Forty-three (43) susceptible lines were identified with the susceptible check Jasmine 85 falling in this group. No highly susceptible line was identified. The newly idenfied resistant genotypes can be used by breeders to develop RYMV resistant varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.