Genetic analysis of growth cone guidance choice points in Drosophila identified neuronal receptor protein tyrosine phosphatases (RPTPs) as key determinants of axon pathfinding behavior. We now demonstrate that the Drosophila Abl tyrosine kinase functions in the intersegmental nerve b (ISNb) motor choice point pathway as an antagonist of the RPTP Dlar. The function of Abl in this pathway is dependent on an intact catalytic domain. We also show that the Abl phosphoprotein substrate Enabled (Ena) is required for choice point navigation. Both Abl and Ena proteins associate with the Dlar cytoplasmic domain and serve as substrates for Dlar in vitro, suggesting that they play a direct role in the Dlar pathway. These data suggest that Dlar, Abl, and Ena define a phosphorylation state-dependent switch that controls growth cone behavior by transmitting signals at the cell surface to the actin cytoskeleton.
Genetic screens for dominant second-site mutations that suppress the lethality of Abl mutations in Drosophila identified alleles of only one gene, enabled (ena). We report that the ena protein contains proline-rich motifs and binds to Abl and Src SH3 domains, ena is also a substrate for the Abl kinase; tyrosine phosphorylation of ena is increased when it is coexpressed in cells with human or Drosophila Abl and endogenous ena tyrosine phosphorylation is reduced in Abl mutant animals. Like Abl, ena is expressed at highest levels in the axons of the embryonic nervous system and ena mutant embryos have defects in axonal architecture. We conclude that a critical function of Drosophila Abl is to phosphorylate and negatively regulate ena protein during neural development.
Drosophila Enabled (Ena) was initially identified as a dominant genetic suppressor of mutations in the Abelson tyrosine kinase and, more recently, as a member of the Ena/human vasodilator-stimulated phosphoprotein (VASP) family of proteins. We have used genetic, biochemical, and cell biological approaches to demonstrate the functional relationship between Ena and human VASP. In addition, we have defined the roles of Ena domains identified as essential for its activity in vivo. We have demonstrated that VASP rescues the embryonic lethality associated with loss of Ena function in Drosophila and have shown that Ena, like VASP, is associated with actin filaments and focal adhesions when expressed in cultured cells. To define sequences that are central to Ena function, we have characterized the molecular lesions present in two lethal ena mutant alleles that affected the Ena/VASP homology domain 1 (EVH1) and EVH2. A missense mutation that resulted in an amino acid substitution in the EVH1 domain eliminated in vitro binding of Ena to the cytoskeletal protein zyxin, a previously reported binding partner of VASP. A nonsense mutation that resulted in a C-terminally truncated Ena protein lacking the EVH2 domain failed to form multimeric complexes and exhibited reduced binding to zyxin and the Abelson Src homology 3 domain. Our analysis demonstrates that Ena and VASP are functionally homologous and defines the conserved EVH1 and EVH2 domains as central to the physiological activity of Ena.
Drosophila Enabled (Ena) is a member of a family of cytoskeleton-associated proteins including mammalian vasodilator-stimulated phosphoprotein and murine Enabled that regulate actin cytoskeleton assembly. Mutations in Drosophila ena were discovered as dominant genetic suppressors of mutations in the Abelson tyrosine kinase (Abl), suggesting that Ena and Abl function in the same pathway or process. We have identified six tyrosine residues on Ena that are phosphorylated by Abl in vitro and in vivo. Mutation of these phosphorylation sites to phenylalanine partially impaired the ability of Ena to restore viability to ena mutant animals, indicating that phosphorylation is required for optimal Ena function. Phosphorylation of Ena by Abl inhibited the binding of Ena to SH3 domains in vitro, suggesting that one effect of Ena phosphorylation may be to modulate its association with other proteins.
Objective
The goal of this study was to assess the immunogenicity and antigenicity of StrataGraft skin tissue in a randomized phase I/II clinical trial for the temporary management of full-thickness skin loss.
Summary Background Data
StrataGraft skin tissue consists of a dermal equivalent containing human dermal fibroblasts and a fully-stratified, biologically active epidermis derived from NIKS cells, a pathogen-free, long-lived, consistent, human keratinocyte progenitor.
Methods
Traumatic skin wounds often require temporary allograft coverage to stabilize the wound bed until autografting is possible. StrataGraft and cadaveric allograft were placed side-by-side on 15 patients with full-thickness skin defects for one week prior to autografting. Allografts were removed from the wound bed and examined for allogeneic immune responses. Immunohistochemistry and indirect immunofluorescence were used to assess tissue structure and cellular composition of allografts. In vitro lymphocyte proliferation assays, chromium-release assays, and development of antibodies were used to examine allogeneic responses.
Results
One week after patient exposure to allografts, there were no differences in the numbers of T or B lymphocytes or Langerhans cells present in StrataGraft skin substitute compared to cadaver allograft, the standard of care. Importantly, exposure to StrataGraft skin substitute did not induce the proliferation of patient peripheral blood mononuclear cells to NIKS keratinocytes or enhance cell-mediated lysis of NIKS keratinocytes in vitro. Similarly, no evidence of antibody generation targeted to the NIKS keratinocytes was seen.
Conclusions
These findings indicate that StrataGraft tissue is well-tolerated and not acutely immunogenic in patients with traumatic skin wounds. Notably, exposure to StrataGraft did not increase patient sensitivity toward or elicit immune responses against the NIKS keratinocytes. We envision this novel skin tissue technology will be widely used to facilitate the healing of traumatic cutaneous wounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.