An effective treatment for age-related cognitive deficits remains an unmet medical need. Currently available drugs for the symptomatic treatment of Alzheimer's disease or other dementias have limited efficacy. This may be due to their action at only one of the many neurotransmitter systems involved in the complex mechanisms that underlie cognition. An alternative approach would be to target second messenger systems that are utilized by multiple neurotransmitters. Cyclic adenosine monophosphate (cAMP) is a second messenger that plays a key role in biochemical processes that regulate the cognitive process of memory consolidation. Prolongation of cAMP signals can be accomplished by inhibiting phosphodiesterases (PDEs). Eleven PDE families, comprised of more than 50 distinct members, are currently known. This review summarizes the evidence demonstrating that rolipram, a selective inhibitor of cAMP-selective PDE4 enzymes, has positive effects on learning and memory in animal models. These data provide support for the general approach of second messenger modulation as a potential therapy for cognitive dysfunction, and specifically suggest that PDE4 inhibitors may have utility for improving the symptoms of cognitive decline associated with neurodegenerative and psychiatric diseases.
The novel PDE4 inhibitors MEM1018 and MEM1091 enhance memory in a manner generally similar to rolipram. PDE4D may be the primary target for the PDE4 inhibitors in the mediation of memory.
A safer treatment for toxoplasmosis would be achieved by improving the selectivity and potency of dihydrofolate reductase (DHFR) inhibitors, such as pyrimethamine (1), for Toxoplasma gondii DHFR (TgDHFR) relative to human DHFR (hDHFR). We previously reported on the identification of meta-biphenyl analog 2, designed by in silico modeling of key differences in the binding pocket between TgDHFR and hDHFR. Compound 2 improves TgDHFR selectivity 6.6-fold and potency 16-fold relative to 1. Here, we report on the optimization and structure−activity relationships of this arylpiperazine series leading to the discovery of 5-(4-(3-(2-methoxypyrimidin-5-yl)phenyl)piperazin-1-yl)pyrimidine-2,4-diamine 3. Compound 3 has a TgDHFR IC 50 of 1.57 ± 0.11 nM and a hDHFR to TgDHFR selectivity ratio of 196, making it 89-fold more potent and 16-fold more selective than 1. Compound 3 was highly effective in control of acute infection by highly virulent strains of T. gondii in the murine model, and it possesses the best combination of selectivity, potency, and prerequisite drug-like properties to advance into IND-enabling, preclinical development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.