Al-12Si-3Cu-1 Mg-1.78Ni alloy is widely used for piston parts in automobile industry. The present paper investigates the effect of aging time for 1-16 h at 180°C after solution treatment of the alloy at 500°C for 5 h, on alloys prepared by gravity casting and squeeze casting. The wear rate of the alloy shows a minimum at an intermediate aging time. The hardness and ultimate tensile strength showed a peak at intermediate aging time. Mechanical properties and wear resistance are found to be better in squeeze cast alloy. The result are explained based on the microstructure developed during casting process and on heat treatment for various durations.
In the present work, the effects of pressure on the wear resistance characteristics, mechanical properties and the microstructures of Al-Si piston alloys that have variable Magnesium (Mg) content are studied. The paper begins with an explanation of the desirable properties of eutectic Al-Si alloys and why these chemical and mechanical properties are desirable in the fabrication of light weight machine components. The methods for further strengthening the alloys using alloying elements such as Ni, Cu and Mg, and applying heat treatment are also discussed. The paper also emphasises on the addition of Magnesium, and compares the traditional gravity die casting with a novel hybrid technology known as squeeze casting. In the results and discussion section, the microstructure properties of the Al-Si both as-cast and after heat treatment conditions are discussed. The mechanical and wear properties as well as the implications of pressure on the alloys are also discussed in details. SEM analyses of wear surface and fracture behavior on the as cast Al-Si alloys and after heat treatment, reveal that squeeze pressure increases fracture ductility as well as resistance to wear; more so upon heat treatment. It is also determined that the hardness and UTS values increases with increase in Magnesium content and reaches the maximum values when Mg content is at 1 % of the alloy's composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.