MicroRNAs (miRNAs) are ;21 nucleotide noncoding RNAs produced by Dicer-catalyzed excision from stem-loop precursors. Many plant miRNAs play critical roles in development, nutrient homeostasis, abiotic stress responses, and pathogen responses via interactions with specific target mRNAs. miRNAs are not the only Dicer-derived small RNAs produced by plants: A substantial amount of the total small RNA abundance and an overwhelming amount of small RNA sequence diversity is contributed by distinct classes of 21-to 24-nucleotide short interfering RNAs. This fact, coupled with the rapidly increasing rate of plant small RNA discovery, demands an increased rigor in miRNA annotations. Herein, we update the specific criteria required for the annotation of plant miRNAs, including experimental and computational data, as well as refinements to standard nomenclature.
Here we describe a set of endogenous short interfering RNAs (siRNAs) in Arabidopsis, some of which direct the cleavage of endogenous mRNAs. These siRNAs correspond to both sense and antisense strands of a noncoding RNA (At2g27400) that apparently is converted to double-stranded RNA and then processed in 21 nt increments. These siRNAs differ from previously described regulatory small RNAs in two respects. First, they require components of the cosuppression pathway (RDR6 and SGS3) and also components of the microRNA (miRNA) pathway (AGO1, DCL1, HEN1, and HYL1) but not components needed for heterochromatic siRNAs (DCL3 and RDR2), another class of endogenous plant siRNAs. Second, these siRNAs repress the expression of genes that have little overall resemblance to the genes from which they originate, a characteristic previously reported only for miRNAs. The identification of this silencing pathway provides yet another dimension to posttranscriptional mRNA regulation in plants.
The phytohormone auxin plays critical roles during plant growth, many of which are mediated by the auxin response transcription factor (ARF) family. MicroRNAs (miRNAs), endogenous 21-nucleotide riboregulators, target several mRNAs implicated in auxin responses. miR160 targets ARF10, ARF16, and ARF17, three of the 23 Arabidopsis thaliana ARF genes. Here, we describe roles of miR160-directed ARF17 posttranscriptional regulation. Plants expressing a miRNA-resistant version of ARF17 have increased ARF17 mRNA levels and altered accumulation of auxin-inducible GH3-like mRNAs, YDK1/GH3.2, GH3.3, GH3.5, and DFL1/GH3.6, which encode auxin-conjugating proteins. These expression changes correlate with dramatic developmental defects, including embryo and emerging leaf symmetry anomalies, leaf shape defects, premature inflorescence development, altered phyllotaxy along the stem, reduced petal size, abnormal stamens, sterility, and root growth defects. These defects demonstrate the importance of miR160-directed ARF17 regulation and implicate ARF17 as a regulator of GH3-like early auxin response genes. Many of these defects resemble phenotypes previously observed in plants expressing viral suppressors of RNA silencing and plants with mutations in genes important for miRNA biogenesis or function, providing a molecular rationale for phenotypes previously associated with more general disruptions of miRNA function.
Arabidopsis encodes four DICER-like (DCL) proteins. DCL1 produces miRNAs, DCL2 produces some virus-derived siRNAs, and DCL3 produces endogenous RDR2-dependent siRNAs, but the role of DCL4 is unknown. We show that DCL4 is the primary processor of endogenous RDR6-dependent trans-acting siRNAs (tasiRNAs). Molecular and phenotypic analyses of all dcl double mutants also revealed partially compensatory functions among DCL proteins. In the absence of DCL4, some RDR6-dependent siRNAs were produced by DCL2 and DCL3, and in the absence of DCL3, some RDR2-dependent siRNAs were produced by DCL2 and DCL4. Consistent with partial redundancies, dcl2 and dcl3 mutants developed normally, whereas dcl4 and dcl3 dcl4 mutants had weak and severe rdr6 phenotypes, respectively, and increased tasiRNA target mRNA accumulation. After three generations, dcl3 dcl4 and dcl2 dcl3 mutants exhibited stochastic developmental phenotypes, some of which were lethal, likely owing to the accumulated loss of heterochromatic siRNA-directed marks. dcl1 dcl3 and dcl1 dcl4, but not dcl1 dcl2 mutants, had phenotypes more severe than dcl1 mutants, consistent with DCL1, DCL3, and DCL4 acting as the primary processors of the three respective classes of endogenous silencing RNAs and DCL2 acting to produce viral-derived siRNAs and as an alternative DCL for endogenous siRNA production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.