During 2001 to 2003, the transmission biology of Phytophthora ramorum, the causal agent of sudden oak death, was studied in mixedevergreen forest, a common forest type in northern, coastal California. Investigation of the sources of spore production focused on coast live oak (Quercus agrifolia) and bay laurel (Umbellularia californica), dominant hosts that comprised 39.7 and 46.2% of the individuals at the study site, respectively. All tests for inoculum production from the surface of infected coast live oak bark or exudates from cankers were negative. In contrast, sporangia and chlamydospores were produced on the surface of infected bay laurel leaves. Mean number of zoospores produced from infected bay laurel leaves under natural field conditions during rainstorms was 1,173.0 +/- SE 301.48, and ranged as high as 5,200 spores/leaf. P. ramorum was recovered from rainwater, soil, litter, and streamwater during the mid- to late rainy season in all 3 years of the study. P. ramorum was not recovered from sporadic summer rains or soil and litter during the hot, dry summer months. Concentrations of inoculum in rainwater varied significantly from year to year and increased as the rainy season progressed for the two complete seasons that were studied. Potential dispersal distances were investigated for rainwater, soil, and streamwater. In rainwater, inoculum moved 5 and 10 m from the inoculum source. For soil, transmission of inoculum was demonstrated from infested soil to bay laurel green leaf litter, and from bay laurel green leaf litter to aerial leaves of bay laurel seedlings. One-third to one-half of the hikers tested at the study site during the rainy season also were carrying infested soil on their shoes. In streamwater, P. ramorum was recovered from an unforested site in pasture 1 km downstream of forest with inoculum sources. In total, these studies provide details on the production and spread of P. ramorum inoculum in mixed-evergreen forest to aid forecasting and managing disease transmission of this environmentally destructive pathogen.
The Big Sur ecoregion in coastal California is a botanically and ecologically diverse area that has recently experienced substantial mortality of oak (Quercus spp.) and tanoak (Lithocarpus densiflorus) trees due to the emerging forest disease sudden oak death, caused by the invasive pathogen Phytophthora ramorum. In response to the urgent need to examine environmental impacts and create management response strategies, we quantified the impact of P. ramorum invasion on tree mortality across the Big Sur ecoregion using high-resolution aircraft imagery and field data. Using the imagery, we mapped all detectable oak and tanoak trees possibly killed by P. ramorum infection within redwoodtanoak forests and mixed oak woodlands. To validate and improve our remote assessment, we quantified the number, size, and infection status of host trees in 77 field plots (0.25 ha). The field data showed that our remote assessment underestimated mortality due to the occurrence of dead trees in the forest understory. For each forest type, we developed regression models that adjusted our remote assessments of tree mortality in relation to field observations of mortality and local habitat variables. The models significantly improved remote assessment of oak mortality, but relationships were stronger for mixed oak woodlands (r 2 = 0.77) than redwoodtanoak forests (r 2 = 0.66). Using the field data, we also modeled the amount of dead tree basal area (m 2 ) in relation to the density of mapped dead trees in mixed oak woodlands (r 2 = 0.73) and redwoodtanoak forests (r 2 = 0.54). Application of the regression models in a GIS estimated 235,678 standing dead trees in 2005 and 12,650 m 2 of tree basal area removed from the ecoregion, with 63% of mortality occurring in redwood-tanoak forests and 37% in mixed oak woodlands. Integration of the remote assessment with population estimates of host abundance, obtained from an independent network of 175 field plots (0.05 ha each), indicated similar prevalence of mortality in redwood-tanoak forests (20.0%) and mixed oak woodlands (20.5%) at this time. This is the first study to quantify a realistic number of dead trees impacted by P. ramorum over a defined ecological region. Ecosystem impacts of such widespread mortality will likely be significant.
The transmission ecology of Phytophthora ramorum from bay laurel (Umbellularia californica) leaves was compared between mixed-evergreen and redwood forest types throughout winter and summer disease cycles in central, coastal California. In a preliminary multisite study, we found that abscission rates of infected leaves were higher at mixed-evergreen sites. In addition, final infection counts were slightly higher at mixed-evergreen sites or not significantly different than at redwood sites, in part due to competition from other foliar pathogens at redwood sites. In a subsequent, detailed study of paired sites where P. ramorum was the main foliar pathogen, summer survival of P. ramorum in bay laurel leaves was lower in mixed-evergreen forest due to lower recovery from infected attached leaves and higher abscission rates of infected leaves. Onset of inoculum production and new infections of bay laurel leaves occurred later in mixed-evergreen forest. Mean inoculum levels in rainwater and final infection counts on leaves were higher in redwood forest. Based on these two studies, lower summer survival of reservoir inoculum in bay laurel leaves in mixed-evergreen forest may result in delayed onset of both inoculum production and new infections, leading to slower disease progress in the early rainy season compared with redwood forest. Although final infection counts also will depend on other foliar pathogens and disease history, in sites where P. ramorum is the main foliar pathogen, these transmission patterns suggest higher rates of disease spread in redwood forests during rainy seasons of short or average length.
Abstract. Non-native forest pathogens can cause dramatic and long-lasting changes to the composition of forests, and these changes may have cascading impacts on community interactions and ecosystem functioning. Phytophthora ramorum, the causal agent of the emergent forest disease sudden oak death (SOD), has a wide host range, but mortality is concentrated in a few dominant tree species of coastal forests in California and Oregon. We examined interactions between P. ramorum and its hosts in redwood and mixed evergreen forest types over an 80,000 ha area in the Big Sur ecoregion of central California, an area that constitutes the southernmost range of the pathogen and includes forest stands on the advancing front of pathogen invasion. We established a network of 280 long-term forest monitoring plots to understand how host composition and forest structure facilitated pathogen invasion, and whether selective mortality from SOD has led to shifts in community composition. Infested and uninfested sites differed significantly in host composition due to both historical trends and disease impacts. A reconstruction of pre-disease forest composition showed that stands that eventually became infested with the pathogen tended to be more mature with larger stems than stands that remained pathogen-free, supporting the hypothesis of aerial dispersal by the pathogen across the landscape followed by local understory spread. The change in species composition in uninfested areas was minimal over the study period, while infested stands had large changes in composition, correlated with the loss of tanoak (Notholithocarpus densiflorus), signaling the potential for SOD to dramatically change coastal forests through selective removal of a dominant host. Forest diversity plays an important role in pathogen establishment and spread, and is in turn changed by pathogen impacts. Asymmetric competency among host species means that impacts of P. ramorum on forest diversity are shaped by the combination and dominance of hosts present in a stand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.