Porphyromonas gingivalis is implicated in the etiology of periodontal disease. Associations between microbial virulence and stress protein expression have been identified in other infections. For example, Hsp90 homologues in several microbial species have been shown to contribute to virulence. We previously reported that P. gingivalis possessed an Hsp90 homologue (HtpG) which cross-reacts with human Hsp90. In addition, we found that elevated levels of serum antibody to Hsp90 stress protein in individuals colonized with this microorganism were associated with periodontal health. However, the role of HtpG in P. gingivalis has not been explored. Therefore, we cloned the htpG gene and investigated the characteristics of HtpG localization and expression in P. gingivalis. htpG exists as a single gene of 2,052 bp from which a single message encoding a mature protein of approximately 68 kDa is transcribed. Western blot analysis revealed that the 68-kDa polypeptide was stress inducible and that a major band at 44 kDa and a minor band at 40 kDa were present at constitutive levels. Cellular localization studies revealed that the 44-and 40-kDa species were associated with membrane and vesicle fractions, while the 68-kDa polypeptide was localized to the cytosolic fractions.
The effects of high temperature on accumulation of the 70‐kDa heat shock protein (HSP70) and nucleoside diphosphate kinase (NDK) as well as two other proteins that have roles in the biosynthesis of storage proteins were examined during grain development. An HSP70 homolog and a 17‐kDa NDK were co‐purified from wheat endosperm, their identity verified, and a cDNA for an HSP70 expressed in endosperm was isolated. Wheat plants (Triticum aestivum, cvs Butte and Vulcan) were heat shocked at 40°C or exposed to maximum daily temperatures of 37 or 40°C during early or mid‐grain fill. Antibodies and cDNA probes for BiP, HSP70, NDK and PDI were used to examine the effect of high temperatures on the accumulation of protein and mRNA in the endosperm. HSP70 mRNA levels increased substantially when plants were exposed to heat shock or to a 1‐day gradual increase to 40°C. The effects of a 5‐day heat treatment on mRNA levels were more complicated and depended on the developmental stage of the grain. A treatment that began at 7 days post‐anthesis (DPA) decreased the level of mRNA for HSP70, BiP, PDI and NDK, whereas a treatment that began at 14 DPA slightly increased mRNA levels. The same treatments increased the accumulation of HSP70 but did not affect BiP, PDI, or NDK protein levels. This is the first detailed report on the effects of heat on mRNA and protein levels for HSP70 in a developing seed storage tissue.
Our previous reports implicated the Hsp90 homologue (HtpG) of Porphyromonas gingivalis (Pg) in its virulence in periodontal disease. We investigated the role of the HtpG stress protein in the virulence of Pg. This report describes the (i) expression of a recombinant Pg HtpG (rHtpG), (ii) generation and characterization of a polyclonal rabbit anti-Pg rHtpG antiserum, and (iii) construction of a Pg htpG isogenic mutant and evaluation of the growth, adherence and invasion properties compared to the wild-type parental strain. The disruption of the htpG gene did not significantly affect growth, and had no effect on Pg adherence to and invasion of cultured human cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.