A functional vertebrate kidney relies on structural units called nephrons, which are epithelial tubules with a sequence of segments each expressing a distinct repertoire of solute transporters. The transcriptional codes driving regional specification, solute transporter program activation, and terminal differentiation of segment populations remain poorly understood. Here, we demonstrate that the KCTD15 paralogs, kctd15a and kctd15b, function in concert to restrict distal early (DE)/thick ascending limb (TAL) segment lineage assignment in the developing zebrafish pronephros by repressing Tfap2a activity. During renal ontogeny, expression of these factors co-localized with tfap2a in distal tubule precursors. kctd15 loss primed nephron cells to adopt distal fates by driving slc12a1, kcnj1a.1, and stc1 expression. These phenotypes were resultant of Tfap2a hyperactivity, where kctd15a/b-deficient embryos exhibited increased abundance of this transcription factor. Interestingly, tfap2a reciprocally promoted kctd15 transcription, unveiling a circuit of autoregulation operating in nephron progenitors. Concomitant kctd15b knockdown with tfap2a overexpression further expanded the DE population. Our study reveals that a transcription factor-repressor feedback module employs tight regulation of Tfap2a and Kctd15 kinetics to control nephron segment fate choice and differentiation during kidney development.
Despite significant advances in understanding nephron segment patterning, many questions remain about the underlying genes and signaling pathways that orchestrate renal progenitor cell fate choices and regulate differentiation. In an effort to identify elusive regulators of nephron segmentation, our lab conducted a high-throughput drug screen using a bioactive chemical library and developing zebrafish, which are a conserved vertebrate model and particularly conducive to large-scale screening approaches. 17β-estradiol (E2), which is the dominant form of estrogen in vertebrates, was a particularly interesting hit from this screen. E2 has been extensively studied in the context of gonad development, but roles for E2 in nephron development were unknown. Here, we report that exogenous estrogen treatments affect distal tubule composition, namely, causing an increase in the distal early segment and a decrease in the neighboring distal late. These changes were noted early in development but were not due to changes in cell dynamics. Interestingly, exposure to the xenoestrogens ethinylestradiol and genistein yielded the same changes in distal segments. Further, upon treatment with an estrogen receptor 2 (Esr2) antagonist, PHTPP, we observed the opposite phenotypes. Similarly, genetic deficiency of the Esr2 analog, esr2b, revealed phenotypes consistent with that of PHTPP treatment. Inhibition of E2 signaling also resulted in decreased expression of essential distal transcription factors, irx3b and its target irx1a. These data suggest that estrogenic compounds are essential for distal segment fate during nephrogenesis in the zebrafish pronephros and expand our fundamental understanding of hormone function during kidney organogenesis.
Key Abbreviations: corpuscle of Stannius (CS); distal early (DE); distal late (DL); fluorescent whole mount in situ hybridization (FISH); immunofluorescence (IF); hours post fertilization (hpf); morpholino oligonucleotide (MO); Loop of Henle (LOH); potassium channel tetramerization domain 15 (kctd15); proximal straight tubule (PST); somite stage (ss); thick ascending limb (TAL); transcription factor AP-2 alpha (tfap2a); whole mount in situ hybridization (WISH); wild-type (WT) AbstractA functional vertebrate kidney relies on structural units called nephrons, which are epithelial tubules that contain a sequence of segments each expressing a distinct repertoire of solute transporters. To date, the transcriptional codes driving regional specification, solute transporter program activation, and terminal differentiation of segment populations remain poorly understood. We demonstrate for the first time that the KCTD15 paralogs, kctd15a and kctd15b, function in concert to restrict distal early (DE)/thick ascending limb (TAL) segment lineage assignment in the developing zebrafish pronephros by repressing Tfap2a activity. During renal ontogeny, expression of these factors co-localized with tfap2a in distal tubule precursors. kctd15 loss primed nephron cells to adopt distal fates by driving expansions in slc12a1, kcnj1a.1, and stc1 marker expression. These phenotypes were resultant of Tfap2a hyperactivity, where kctd15a/b-deficient embryos exhibited increased abundance of this transcription factor. Interestingly, tfap2a reciprocally promoted kctd15 transcription, unveiling a circuit of autoregulation operating in nephron progenitors. Concomitant kctd15b knockdown with tfap2a overexpression produced genetic synergy and further expanded the DE population. Our study provides strong evidence that a transcription factor-repressor feedback module employs tight regulation of Tfap2a and Kctd15 kinetics to control nephron segment fate choice and differentiation during kidney development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.