Biodegradable polymeric scaffolds are being investigated as scaffolding materials for use in regenerative medicine. While the in vivo evaluation of various three‐dimensional (3D), porous, biodegradable polymeric scaffolds has been reported, most studies are ≤3 months in duration, which is typically prior to bulk polymer degradation, a critical event that may initiate an inflammatory response and inhibit tissue formation. Here, a 6 month in vitro degradation and corresponding in vivo studies that characterized scaffold changes during complete degradation of an amorphous, 3D poly(lactide‐co‐glycolide)(3D‐PLAGA) scaffold and near‐complete degradation of a semi‐crystalline3D‐PLAGA scaffold are reported. Using sintered microsphere matrix technology, constructs were fabricated in a tubular shape, with the longitudinal axis void and a median pore size that mimicked the architecture of native bone. Long‐term quantitative measurements of molecular weight, mechanical properties, and porosity provided a basis for theorization of the scaffold degradation process. Following implantation in a critical size ulnar defect model, histological analysis and quantitative microCT indicated early solubilization of the semi‐crystalline polymer created an acidic microenvironment that inhibited mineralized tissue formation. Thus, the use of amorphous over semi‐crystalline PLAGA materials is advocated for applications in regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.