The structural dynamics following photoexcitation of a photosensing BLUF (blue light sensing using FAD) domain protein have been investigated by ultrafast transient infrared spectroscopy. Specifically, the transcriptional antirepressor AppA from Rhodobacter sphaeroides has been studied in the light and dark adapted forms and in photoactive and inactive mutants W104F and Q63L. A transient absorption has been observed at 1666 cm(-1) which is a marker mode for the photoactive state of the protein. This instantaneously formed transient is tentatively assigned to a vibrational mode of a protein residue modified through its interaction with the excited state of the chromophore. A plausible candidate consistent with the mutant studies is the carbonyl stretch of the Q63 amide side chain. These results suggest that modification of the strength of protein chromophore H-bonded interactions is the primary step in the BLUF domain photocycle. No new species were observed to be formed during the first nanosecond. Measurement of the ultrafast ground state recovery showed that the excited state of light adapted AppA is strongly quenched compared to the dark adapted state. It is proposed that the reorganization which occurs to form the signaling state is favorable to electron-transfer quenching.
Photoexcitation of the flavin chromophore in the BLUF photosensor AppA results in a conformational change that leads to photosensor activation. This conformational change is mediated by a hydrogen-bonding network that surrounds the flavin, and photoexcitation is known to result in changes in the network that include a strengthening of hydrogen bonding to the flavin C4═O carbonyl group. Q63 is a key residue in the hydrogen-bonding network, and replacement of this residue with a glutamate results in a photoinactive mutant. While the ultrafast time-resolved infrared (TRIR) spectrum of Q63E AppA(BLUF) is characterized by flavin carbonyl modes at 1680 and 1650 cm(-1), which are similar in frequency to the analogous modes from the light activated state of the wild-type protein, a band is also observed in the TRIR spectrum at 1724 cm(-1) that is unambiguously assigned to the Q63E carboxylic acid based on U-(13)C labeling of the protein. Light absorption instantaneously (<100 fs) bleaches the 1724 cm(-1) band leading to a transient absorption at 1707 cm(-1). Because Q63E is not part of the isoalloxazine electronic transition, the shift in frequency must arise from a sub picosecond perturbation to the flavin binding pocket. The light-induced change in the frequency of the Q63E side chain is assigned to an increase in hydrogen-bond strength of 3 kcal mol(-1) caused by electronic reorganization of the isoalloxazine ring in the excited state, providing direct evidence that the protein matrix of AppA responds instantaneously to changes in the electronic structure of the chromophore and supporting a model for photoactivation of the wild-type protein that involves initial tautomerization of the Q63 side chain.
The blue light using flavin (BLUF) domain photosensors, such as the transcriptional antirepressor AppA, utilize a noncovalently bound flavin as the chromophore for photoreception. Since the isoalloxazine ring of the chromophore is unable to undergo large-scale structural change upon light absorption, there is intense interest in understanding how the BLUF protein matrix senses and responds to flavin photoexcitation. Light absorption is proposed to result in alterations in the hydrogen-bonding network that surrounds the flavin chromophore on an ultrafast time scale, and the structural changes caused by photoexcitation are being probed by vibrational spectroscopy. Here we report ultrafast time-resolved infrared spectra of the AppA BLUF domain (AppA(BLUF)) reconstituted with isotopically labeled riboflavin (Rf) and flavin adenine dinucleotide (FAD), which permit the first unambiguous assignment of ground and excited state modes arising directly from the flavin carbonyl groups. Studies of model compounds and DFT calculations of the ground state vibrational spectra reveal the sensitivity of these modes to their environment, indicating that they can be used as probes of structural dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.