Assays were performed on individual Escherichia coli beta-galactosidase molecules at 2 different concentrations of the substrate DDAO-beta-D-galactoside using a free zone capillary electrophoresis-based protocol with an in-laboratory-constructed instrument utilizing laser-induced fluorescence detection. In a typical run, 2 enzyme molecules were injected into the capillary. They were separated from each other by a brief period of electrophoresis and incubated on the capillary in the presence of the substrate. They were then mobilized on the capillary into a zone of substrate at a different concentration, re-incubated, and the product peaks mobilized past the detector . The relative change in activity as the concentration was increased differed between molecules, suggesting differences in Km. In a different experiment, the capillary was filled with on average 13 enzyme molecules per run, incubated, and the activities of the individual molecules determined. The shapes of the distribution curves of single molecule activities obtained at different concentrations of the substrate resorufin-beta-D-galactoside were indistinguishable, suggesting a homogeneous Km. To explain why individual enzyme molecules behaved as if they were heterogeneous with respect to Km but the population behaved as if it were homogeneous, theoretical Michaelis-Menten curves were constructed. The curves for populations with heterogeneous Km values were found to be indistinguishable from that of a homogeneous population.
Single enzyme molecule assays were performed using capillary electrophoresis-based protocols on beta-galactosidase from Lactobacillus delbrueckii, Lactobacillus reuteri, Lactobacillus helveticus and Bacillus circulans. The enzyme was found to show static heterogeneity with respect to catalytic rate and the variance in rate increased with protein size. This is consistent with the proposal that random errors in translation may be an important underlying component of enzyme heterogeneity. Additionally these enzymes were found to show static heterogeneity with respect to electrophoretic mobility. Comparison of wild-type and rpsL E. coli beta-galactosidase expressed in the presence and absence of streptomycin suggested that increases in error do not result in detectable increases in the dynamic heterogeneity of activity with increasing temperature. Finally, a method was developed to measure the dynamic heterogeneity in electrophoretic mobility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.