SUMMARY
Mitochondrial Ca2+ Uniporter (MCU)-dependent mitochondrial Ca2+ uptake is the primary mechanism for increasing matrix Ca2+ in most cell types. However, a limited understanding of the MCU complex assembly impedes the comprehension of the precise mechanisms underlying MCU activity. Here we report that mouse cardiomyocytes and endothelial cells lacking MCU regulator 1, MCUR1, have severely impaired [Ca2+]m uptake and IMCU current. MCUR1 binds to MCU and EMRE and function as a scaffold factor. Our protein binding analyses identified the minimal, highly conserved regions of coiled-coil domain of both MCU and MCUR1 that are necessary for heterooligomeric complex formation. Loss of MCUR1 perturbed MCU heterooligomeric complex and functions as a scaffold factor for the assembly of MCU complex. Vascular endothelial deletion of MCU and MCUR1 impaired mitochondrial bioenergetics, cell proliferation and migration but elicited autophagy. These studies establish the existence of a MCU complex which assembles at the mitochondrial integral membrane and regulates Ca2+-dependent mitochondrial metabolism.
Pseudomonas aeruginosa (P. aeruginosa) is commonly implicated in hospital-acquired infections where its capacity to form biofilms on a variety of surfaces and the resulting enhanced antibiotic resistance seriously limit treatment choices. Because surface attachment sensitizes P. aeruginosa to quorum sensing (QS) and induces virulence through both chemical and mechanical cues, we investigate the effect of surface properties through spatially patterned mucin, combined with sub-inhibitory concentrations of tobramycin on QS and virulence factors in both mucoid and non-mucoid P. aeruginosa strains using multi-modal chemical imaging combining confocal Raman microscopy and matrix-assisted laser desorption/ionization−mass spectrometry. Samples comprise surface-adherent static biofilms at a solid−water interface, supernatant liquid, and pellicle biofilms at an air−water interface at various time points. Although the presence of a sub-inhibitory concentration of tobramycin in the supernatant retards growth and development of static biofilms independent of strain and surface mucin patterning, we observe clear differences in the behavior of mucoid and non-mucoid strains. Quinolone signals in a non-mucoid strain are induced earlier and are influenced by mucin surface patterning to a degree not exhibited in the mucoid strain. Additionally, phenazine virulence factors, such as pyocyanin, are observed in the pellicle biofilms of both mucoid and non-mucoid strains but are not detected in the static biofilms from either strain, highlighting the differences in stress response between pellicle and static biofilms. Differences between mucoid and non-mucoid strains are consistent with their strain-specific phenology, in which the mucoid strain develops highly protected biofilms.
Pseudomonas aeruginosa produces a number of phenazine metabolites, including pyocyanin (PYO), phenazine-1-carboxamide (PCN), and phenazine-1-carboxylic acid (PCA). Among these, PYO has been most widely studied as a biomarker of P. aeruginosa infection. However, despite its broad-spectrum antibiotic properties and its role as a precursor in the biosynthetic route leading to other secondary phenazines, PCA has attracted less attention, partially due to its relatively low concentration and interference from other highly abundant phenazines. This challenge is addressed here by constructing a hierarchically organized nanostructure consisting of a pH-responsive block copolymer (BCP) membrane with nanopore electrode arrays (NEAs) filled with gold nanoparticles (AuNPs) to separate and detect PCA in bacterial environments. The BCP@NEA strategy is designed such that adjusting the pH of the bacterial medium to 4.5, which is above the pK a of PCA but below the pK a of PYO and PCN, ensures that PCA is negatively charged and can be selectively transported across the BCP membrane. At pH 4.5, only PCA is transported into the AuNP-filled NEAs, while PYO and PCN are blocked. Structural characterization illustrates the rigorous spatial segregation of the AuNPs in the NEA nanopore volume, allowing PCA secreted from P. aeruginosa to be quantitatively determined as a function of incubation time using square-wave voltammetry and surface-enhanced Raman spectroscopy. The strategy proposed in this study can be extended by changing the nature of the hydrophilic block and subsequently applied to detect other redox-active metabolites at a low concentration in complex biological samples and, thus, help understand metabolism in microbial communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.