Outcomes following pediatric traumatic brain injury (TBI) are dependent on initial injury severity and prevention of secondary injury. Hypoxia, hypotension, and hyperventilation following TBI are associated with increased mortality. The purpose of this study was to determine the association of non-routine events (NREs) during the initial resuscitation phase with these physiological disturbances. We conducted a video review of pediatric trauma resuscitations of patients with suspected TBI and Glasgow Coma Scale (GCS) scores <13. NREs were rated as “momentary” if task progression was delayed by <1 min and “moderate” if delayed by >1 min. Vital sign monitor data were used to identify periods of significant physiological disturbances. We calculated the association between the rate of overall and moderate NREs per case and the proportion of cases with abnormal vital signs using multi-variate linear regression, controlling for GCS score and need for intubation. Among 26 resuscitations, 604 NREs were identified with a median of 23 (interquartile range [IQR] 17–27.8, range 5–44) per case. Moderate delay NREs occurred in 19 resuscitations ( n = 32, median 1 NRE/resuscitation, IQR 0.3–1, range 0–5). Oxygen desaturation and respiratory depression were associated with a greater rate of moderate NREs ( p = 0.008, p < 0.001, respectively). We observed no association between duration of hypotension, desaturation, and respiratory depression and overall NRE rate. NREs are common in the initial resuscitation of children with moderate to severe TBI. Episodes of hypoxia and respiratory depression are associated with NREs that cause a moderate delay in task progression. Conformance with resuscitation guidelines is needed to prevent physiological events associated with adverse outcomes following pediatric TBI.
We describe an initial analysis of speech during team-based medical scenarios and its potential to indicate process delays in an emergency medical setting. We analyzed the speech of trauma resuscitation teams in cases with delayed intravenous/intraosseous (IV/IO) line placement, a significant contributor to delays during life-saving interventions. The insights gained from this analysis will inform the design of a clinical decision support system (CDSS) that will use multiple sensor modalities to alert medical teams to errors in real time. We contribute to the literature by determining how the intention of each speech line and the sentence can support real-time, automatic detection of delays during time-critical team activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.