Results from this study are consistent with results in mouse and fly models of FXS, and suggest that lithium is well-tolerated and provides functional benefits in FXS, possibly by modifying the underlying neural defect. A placebo-controlled trial of lithium in FXS is warranted.
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder among carriers of premutation expansions (55-200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene. The clinical features of FXTAS, as well as various forms of clinical involvement in carriers without FXTAS, are thought to arise through a direct toxic gain of function of high levels of FMR1 mRNA containing the expanded CGG repeat. Here we report a cellular endophenotype involving increased stress response (HSP27, HSP70 and CRYAB) and altered lamin A/C expression/organization in cultured skin fibroblasts from 11 male carriers of premutation alleles of the FMR1 gene, including six patients with FXTAS and five premutation carriers with no clinical evidence of FXTAS, compared with six controls. A similar abnormal cellular phenotype was found in CNS tissue from 10 patients with FXTAS. Finally, there is an analogous abnormal cellular distribution of lamin A/C isoforms in knock-in mice bearing the expanded CGG repeat in the murine Fmr1 gene. These alterations are evident even in mouse embryonic fibroblasts, raising the possibility that, in humans, the expanded-repeat mRNA triggers pathogenic mechanisms early in development, thus providing a molecular basis for the neurodevelopmental abnormalities observed in some children and clinical symptoms in some adults who are carriers of premutation FMR1 alleles. Cellular dysregulation in fibroblasts represents a novel and highly advantageous model for investigating disease pathogenesis in premutation carriers and for quantifying and monitoring disease progression. Fibroblast studies may also prove useful in screening and testing the efficacy of therapeutic interventions.
Lack of production of the Fragile X Mental Retardation Protein (FMRP) leads to changes in dendritic morphology and resultant cognitive and behavioral manifestations characteristic of individuals with Fragile X syndrome (FXS). FMRP is an RNA-binding protein that is believed to regulate the translation of a large number (probably over 100) of other proteins, leading to a complex and variable set of symptoms in FXS. In a mouse model of FXS, we previously observed delayed initiation of synaptically localized protein synthesis in response to neurotransmitter stimulation, as compared to wild-type mice. We now likewise have observed delayed early-phase phosphorylation of extracellular-signal regulated kinase (ERK), a nodal point for cell signaling cascades, in both neurons and thymocytes of fmr-1 KO mice. We further report that early-phase kinetics of ERK activation in lymphocytes from human peripheral blood is delayed in a cohort of individuals with FXS, relative to normlal controls, suggesting a potential biomarker to measure metabolic status of disease for individuals with FXS.
Clinical trials targeting recently elucidated synaptic defects in fragile X syndrome (FXS) will require outcome measures capable of assessing short-term changes in cognitive functioning. Potentially useful measures for FXS were evaluated here in a test-retest setting in males and females with FXS (N = 46). Good reproducibility, determined by an interclass correlation (ICC) or weighted kappa (kappa) of 0.7-0.9 was seen for RBANS List and Story Memory, NEPSY Tower, Woodcock-Johnson Spatial Relations and the commissions score from the Carolina Fragile X Project Continuous Performance Test (CPT). This study demonstrates the feasibility of generating test profiles containing reliability data, ability levels required for test performance, and refusal rates to assist with choice of outcome measures in FXS and other cohorts with cognitive disability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.