The American Diabetes Association, JDRF, the European Association for the Study of Diabetes, and the American Association of Clinical Endocrinologists convened a research symposium, “The Differentiation of Diabetes by Pathophysiology, Natural History and Prognosis” on 10–12 October 2015. International experts in genetics, immunology, metabolism, endocrinology, and systems biology discussed genetic and environmental determinants of type 1 and type 2 diabetes risk and progression, as well as complications. The participants debated how to determine appropriate therapeutic approaches based on disease pathophysiology and stage and defined remaining research gaps hindering a personalized medical approach for diabetes to drive the field to address these gaps. The authors recommend a structure for data stratification to define the phenotypes and genotypes of subtypes of diabetes that will facilitate individualized treatment.
The convergence of advances in medical science, human biology, data science, and technology has enabled the generation of new insights into the phenotype known as "diabetes." Increased knowledge of this condition has emerged from populations around the world, illuminating the differences in how diabetes presents, its variable prevalence, and how best practice in treatment varies between populations. In parallel, focus has been placed on the development of tools for the application of precision medicine to numerous conditions. This Consensus Report presents the American Diabetes Association (ADA) Precision Medicine in Diabetes Initiative in partnership with the European Association for the Study of Diabetes (EASD), including its mission, the current state of the field, and prospects for the future. Expert opinions are presented on areas of precision diagnostics and precision therapeutics (including prevention and treatment), and key barriers to and opportunities for implementation of precision diabetes medicine, with better care and outcomes around the globe, are highlighted. Cases where precision diagnosis is already feasible and effective (i.e., monogenic forms of diabetes) are presented, while the major hurdles to the global implementation of precision diagnosis of complex forms of diabetes are discussed. The situation is similar for precision therapeutics, in which the appropriate therapy will often change over time owing to the manner in which diabetes evolves within individual patients. This Consensus Report describes a foundation for precision diabetes medicine, while highlighting what remains to be done to realize its potential. This, combined with a subsequent, detailed evidencebased review (due 2022), will provide a roadmap for precision medicine in diabetes that helps improve the quality of life for all those with diabetes. RATIONALE FOR PRECISION MEDICINE IN DIABETES The practice of medicine centers on the individual. From the beginning, the physician has examined the patient suffering from illness, ascertained his/her signs and symptoms, related them to the medical knowledge available at the time, recognized patterns that fit a certain category and, based on the practical wisdom accumulated via empirical trial and error, applied a given remedy that is best suited to the situation at hand. Thus, the concept of precision medicine, often defined as
The convergence of advances in medical science, human biology, data science and technology has enabled the generation of new insights into the phenotype known as 'diabetes'. Increased knowledge of this condition has emerged from populations around the world, illuminating the differences in how diabetes presents, its variable prevalence and how best practice in treatment varies between populations. In parallel, focus has been placed on the development of tools for the application of precision medicine to numerous conditions. This Consensus Report presents the American Diabetes Association (ADA) Precision Medicine in Diabetes Initiative in partnership with the European Association for the Study of Diabetes (EASD), including its mission, the current state of the field and prospects for the future. Expert opinions are presented on areas of precision diagnostics and precision therapeutics (including prevention and treatment) and key barriers to and opportunities for implementation of precision diabetes medicine, with better care and outcomes around the globe, are highlighted. Cases where precision diagnosis is already feasible and effective (i.e. monogenic forms of diabetes) are presented, while the major hurdles to the global implementation of precision diagnosis of complex forms of diabetes are discussed. The situation is similar for precision therapeutics, in which the appropriate therapy will often change over time owing to the manner in which diabetes evolves within individual patients. This Consensus Report describes a foundation for precision diabetes medicine, while highlighting what remains to be done to realise its potential. This, combined with a subsequent, detailed evidence-based review (due 2022), will provide a roadmap for precision medicine in diabetes that helps improve the quality of life for all those with diabetes.
From 27–29 October 2014, more than 100 people gathered in Chicago, IL, to participate in a research symposium titled “Diabetes and the Microbiome,” jointly sponsored by the American Diabetes Association and JDRF. The conference brought together international scholars and trainees from multiple disciplines, including microbiology, bioinformatics, endocrinology, metabolism, and immunology, to share the current understanding of host-microbe interactions and their influences on diabetes and metabolism. Notably, this gathering was the first to assemble specialists with distinct expertise in type 1 diabetes, type 2 diabetes, immunology, and microbiology with the goal of discussing and defining potential pathophysiologies linking the microbiome and diabetes. In addition to reviewing existing evidence in the field, speakers presented their own original research to provide a comprehensive view of the current understanding of the topics under discussion.Presentations and discussions throughout the conference reflected a number of important concepts. The microbiota in any host represent a complex ecosystem with a high degree of interindividual variability. Different microbial communities, comprising bacteria, archaea, viruses, and fungi, occupy separate niches in and on the human body. Individually and collectively, these microbes provide benefits to the host—including nutrient harvest from food and protection against pathogens. They are dynamically regulated by both host genes and the environment, and they critically influence both physiology and lifelong health. The objective of the symposium was to discuss the relationship between the host and the microbiome—the combination of microbiota and their biomolecular environment and ecology—specifically with regard to metabolic and immunological systems and to define the critical research needed to understand and potentially target the microbiome in the prevention and treatment of diabetes. In this report, we present meeting highlights in the following areas: 1) relationships between diabetes and the microbiome, 2) bioinformatic tools, resources, and study design considerations, 3) microbial programming of the immune system, 4) the microbiome and energy balance, 5) interventions, and 6) limitations, unanswered questions, and resource and policy needs.
GHRH is a hypothalamic peptide that stimulates the synthesis and secretion of GH from pituitary somatotroph cells. The GHRH receptor is a seven-transmembrane G protein-coupled receptor that localizes to the surface of somatotroph cells and binds GHRH. Alternative splicing of the GHRH receptor primary transcript at the intron/exon boundary 3' of exon 11 results in inclusion of sequence that is normally intronic. In the human, this inclusion has an in-frame premature stop codon, and this variant mRNA encodes a protein truncated just before the sixth transmembrane domain. To identify the effects of the truncated receptor on signaling of the wild-type receptor and the mechanisms by which its effects are produced, the full-length and truncated receptor constructs were epitope tagged and transfected into HeLa T4 cells to examine signaling and expression. Results show that the truncated GHRH receptor cannot signal through the cAMP pathway and acts as a dominant inhibitor of wild-type receptor signaling. The wild-type and truncated GHRH receptor proteins form a complex. Stably transfected cell lines were generated to examine the mechanism of signal inhibition by the truncated receptor. The data show that receptor cell surface expression is not altered when the wild-type and truncated receptors are cotransfected, but that truncated receptor coexpression substantially reduces GHRH binding by the wild-type receptor. The results support an important role for alternative splicing in mediating the effects of G protein-coupled receptors in general, and suggest that the GHRH receptor can form multimers, which may be important to its signaling properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.